layer Bottleneck layer又稱之為瓶頸層,使用的是1*1的卷積神經網絡。 使 ...
YOLOv 組件 作者:elfin 資料來源:yolov 目錄 標准卷積: Conv BN activate DWConv深度可分離卷積 Bottleneck瓶頸層 BottleneckCSP CSP瓶頸層 ResNet模塊 SPP空間金字塔池化模塊 標准卷積: Conv BN activate 參數說明: g:groups,通道分組的參數,輸入通道數 輸出通道數必須同時滿足被groups整除 ...
2021-01-12 16:23 11 3883 推薦指數:
layer Bottleneck layer又稱之為瓶頸層,使用的是1*1的卷積神經網絡。 使 ...
本文來自公眾號“每日一醒” SPP 對於一個CNN模型,可以將其分為兩個部分: 前面包含卷積層、激活函數層、池化層的特征提取網絡,下稱CNN_Pre, 后面的全連接網絡,下稱CNN_Post。 許多CNN模型都對輸入的圖片大小有要求,實際上 ...
基於空間金字塔池化的卷積神經網絡物體檢測 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一、相關理論 本篇博文主要講解大神何凱明2014年的paper ...
空間金字塔池化技術, 厲害之處,在於使得我們構建的網絡,可以輸入任意大小的圖片,不需要經過裁剪縮放等操作。 是后續許多金字塔技術(psp,aspp等)的起源,主要的目的都是為了獲取場景語境信息,獲取上下文的聯系。 如圖所示,對於選擇的不同大小的區域對應到卷積之后的特征圖上 ...
https://zhuanlan.zhihu.com/p/65377955 分組卷積:把特征圖分成g組,分別用g組卷積核進行卷積然后在通道數相加 深度可分離卷積將卷積操作中的濾波和維數變換分開成兩組卷積 ...
以[3,64,64]的input為例,假設我們要得到[4,64,64]的output.以3x3卷積核為例. 常規的卷及操作如下圖所示: 參數量共計3 x 3 x 3 x 4 = 108. 深度可分離卷積可分為2個部分 depthwise convolution pointwise ...
常規卷積 常規卷積中,連接的上一層一般具有多個通道(這里假設為n個通道),因此在做卷積時,一個濾波器(filter)必須具有n個卷積核(kernel)來與之對應。一個濾波器完成一次卷積,實際上是多個卷積核與上一層對應通道的特征圖進行卷積后,再進行相加,從而輸出下一層的一個通道特征圖。在下一層中 ...
1、深度可分離卷積 Depthwise Separable Convolution (一)結構 實質上是將標准卷積分成了兩步:depthwise卷積和pointwise卷積。 標准卷積: depthwise卷積: pointwise卷積: 2、代碼實現 [32 ...