原文:奇異值分解(SVD)詳解及其應用

.前言 第一次接觸奇異值分解還是在本科期間,那個時候要用到點對點的剛體配准,這是查文獻剛好找到了四元數理論用於配准方法 點對點配准可以利用四元數方法,如果點數不一致更建議應用ICP算法 。一直想找個時間把奇異值分解理清楚 弄明白,直到今天才系統地來進行總結。 上一次學習過關於PCA的文章,PCA的實現一般有兩種,一種是用特征值分解去實現的,一種是用奇異值分解去實現的。特征值和奇異值在大部分人的印 ...

2021-01-05 16:51 0 327 推薦指數:

查看詳情

矩陣奇異值分解(SVD)及其應用

任何跟特征奇異有關的應用背景。奇異值分解是一個有着很明顯的物理意義的一種方法,它可以將一個比較復 ...

Thu Sep 13 04:09:00 CST 2018 2 4026
奇異值分解(SVD)原理及應用

一、奇異與特征基礎知識: 特征分解奇異值分解在機器學習領域都是屬於滿地可見的方法。兩者有着很緊密的關系,我在接下來會談到,特征分解奇異值分解的目的都是一樣,就是提取出一個矩陣最重要的特征。先談談特征分解吧: 1)特征: 如果說一個向量v ...

Sat Oct 06 05:14:00 CST 2018 0 4057
奇異值分解SVD

0 - 特征分解(EVD) 奇異值分解之前需要用到特征分解,回顧一下特征分解。 假設$A_{m \times m}$是一個是對稱矩陣($A=A^T$),則可以被分解為如下形式, $$A_{m\times m}=Q_{m\times m}\Sigma_{m\times m} Q_{m ...

Sun Oct 20 22:57:00 CST 2019 0 404
奇異值分解SVD

奇異值分解   特征分解是一個提取矩陣特征很不錯的方法,但是它只是對方陣而言的,在現實的世界中,我們看到的大部分矩陣都不是方陣。  奇異值分解基本定理:若 $ A$ 為 $ m \times n$ 實矩陣, 則 $ A$ 的奇異值分解存在   $A=U \Sigma V^{T ...

Sun Oct 03 00:35:00 CST 2021 1 150
奇異值分解(SVD)

奇異值分解(SVD) 特征與特征向量 對於一個實對稱矩陣\(A\in R^{n\times n}\),如果存在\(x\in R^n\)和\(\lambda \in R\)滿足: \[\begin{align} Ax=\lambda x \end{align} \] 則我們說 ...

Mon Nov 08 17:47:00 CST 2021 0 122
奇異值分解SVD

文檔鏈接:http://files.cnblogs.com/files/bincoding/%E5%A5%87%E5%BC%82%E5%80%BC%E5%88%86%E8%A7%A3.zip 強大的矩陣奇異值分解(SVD)及其應用 版權聲明: 本文由LeftNotEasy發布 ...

Wed May 24 00:01:00 CST 2017 0 1718
奇異值分解SVD)與在降維中的應用

  奇異值分解(Singular Value Decomposition,SVD)是在機器學習領域廣泛應用的算法,它不光可以用於降維算法中的特征分解,還可以用於推薦系統,以及自然語言處理等領域。是很多機器學習算法的基石。本文就對SVD的原理做一個總結,並討論在在PCA降維算法中是如何運用運用SVD ...

Fri Jul 27 01:00:00 CST 2018 0 827
強大的矩陣奇異值分解(SVD)及其應用

有兩種,一種是用特征分解去實現的,一種是用奇異值分解去實現的。在上篇文章中便是基於特征分解的一種解 ...

Tue Sep 25 18:32:00 CST 2012 0 18272
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM