深度學習:欠擬合問題的幾種解決方案 發布者:AI檸檬博主 ...
在進行數據挖掘或者機器學習模型建立的時候,因為在統計學習中,假設數據滿足獨立同分布 i.i.d,independently and identically distributed ,即當前已產生的數據可以對未來的數據進行推測與模擬,因此都是使用歷史數據建立模型,即使用已經產生的數據去訓練,然后使用該模型去擬合未來的數據。 在我們機器學習和深度學習的訓練過程中,經常會出現過擬合和欠擬合的現象。訓練 ...
2021-01-04 22:04 0 1730 推薦指數:
深度學習:欠擬合問題的幾種解決方案 發布者:AI檸檬博主 ...
過擬合、欠擬合及其解決方案 過擬合、欠擬合的概念 權重衰減 丟棄法 模型選擇、過擬合和欠擬合 訓練誤差和泛化誤差 在解釋上述現象之前,我們需要區分訓練誤差(training error)和泛化誤差 ...
過擬合、欠擬合及其解決方案 過擬合、欠擬合的概念 權重衰減 丟棄法 模型選擇、過擬合和欠擬合 訓練誤差和泛化誤差 在解釋上述現象之前,我們需要區分訓練誤差(training error)和泛化誤差(generalization error)。通俗來講,前者指模型在訓練 ...
作者:我執 鏈接:https://zhuanlan.zhihu.com/p/271727854 來源:知乎 著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請注明出處。 有哪些原因會導致過擬合? 數據層面 訓練集和測試集的數據分布不一致 ...
過擬合和欠擬合是在網絡訓練中常常碰到的問題 過擬合(overfit):訓練誤差小,但是對於測試集上的誤差很大。可能模型過於復雜,訓練中只”記住”了訓練樣本,然而其泛化誤差卻很高。 欠擬合(underfit):訓練誤差很大,無法找到合適的函數描述數據集 下面介紹這兩種情況下 ...
過的損失函數,例如線性回歸用到的平方損失函數和softmax回歸用到的交叉熵損失函數。 機器學習模型 ...
機器學習的基本問題是利用模型對數據進行擬合,學習的目的並非是對有限訓練集進行正確預測,而是對未曾在訓練集合出現的樣本能夠正確預測。模型對訓練集數據的誤差稱為經驗誤差,對測試集數據的誤差稱為泛化誤差。模型對訓練集以外樣本的預測能力就稱為模型的泛化能力,追求這種泛化能力始終是機器學習的目標 過擬合 ...
在學習李宏毅機器學習的課程中,在第二課中遇到了兩個概念:過擬合(overfitting)和欠擬合(underfitting),老師對於這兩個概念產生的原因以及解決方案沒有提及太多,所以今天就讓我們一起學習一下有關這兩個名詞的概念、如何避免等等。 目錄 1.過擬合(overfitting)和欠 ...