梯度下降法 梯度下降法用來求解目標函數的極值。這個極值是給定模型給定數據之后在參數空間中搜索找到的。迭代過程為: 可以看出,梯度下降法更新參數的方式為目標函數在當前參數取值下的梯度值,前面再加上一個步長控制參數alpha。梯度下降法通常用一個三維圖來展示,迭代過程就好像在不斷地下坡,最終 ...
優化理論 凸集 保持凸性的運算 線性錐不等式組 分離超平面和支撐超平面 超平面和半空間 歐幾里得球 多面體 單純形 優化理論 凸函數 共軛函數 擬凸函數 對數凹 對數凸函數 關於廣義不等關系的凸性 優化理論 優化導論和無約束問題的最優條件 優化問題的類型 局部 全局和嚴格優化 梯度和Hessian 黑塞矩陣和方向導數 無約束問題的最優條件 優化理論 牛頓法 牛頓法求根 收斂速度 二次收斂性 修正 ...
2020-12-25 12:17 0 875 推薦指數:
梯度下降法 梯度下降法用來求解目標函數的極值。這個極值是給定模型給定數據之后在參數空間中搜索找到的。迭代過程為: 可以看出,梯度下降法更新參數的方式為目標函數在當前參數取值下的梯度值,前面再加上一個步長控制參數alpha。梯度下降法通常用一個三維圖來展示,迭代過程就好像在不斷地下坡,最終 ...
、局部、全局和嚴格優化、梯度和Hessian 黑塞矩陣和方向導數、無約束問題的最優條件 優化理論0 ...
2 對梯度算法進行修改,使其運用在有約束條件下 2.1 投影法 2. ...
本文講解的是無約束優化中幾個常見的基於梯度的方法,主要有梯度下降與牛頓方法、BFGS 與 L-BFGS 算法。 梯度下降法是基於目標函數梯度的,算法的收斂速度是線性的,並且當問題是病態時或者問題規模較大時,收斂速度尤其慢(幾乎不適用); 牛頓法是基於目標函數的二階導數(Hesse 矩陣 ...
特點:具有超線性收斂速度,只需要計算梯度,避免計算二階導數 算法步驟 \(step0:\) 給定初始值\(x_0\),容許誤差\(\epsilon\) \(step1:\) 計算梯度\(g_k=\nabla f(x_k)\),if \(norm(g_k)<=\epsilon ...
概述 優化問題就是在給定限制條件下尋找目標函數\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的極值點。極值可以分為整體極值或局部極值,整體極值即函數的最大/最小值,局部極值就是函數在有限鄰域內的最大/最小值。通常都希望能求得函數的整體 ...
最優化問題中常常需要求解目標函數的最大值或最小值,比如SVM支持向量機算法需要求解分類之間最短距離,神經網絡中需要計算損失函數的最小值,分類樹問題需要計算熵的最小或最大值等等。如果目標函數可求導常用梯度法,不能求導時一般選用模式搜索法。 一、梯度法求解最優問題 由數學分析知識可以知道 ...
我們每個人都會在我們的生活或者工作中遇到各種各樣的最優化問題,比如每個企業和個人都要考慮的一個問題“在一定成本下,如何使利潤最大化”等。最優化方法是一種數學方法,它是研究在給定約束之下如何尋求某些因素(的量),以使某一(或某些)指標達到最優的一些學科的總稱。隨着學習的深入,博主越來越發現最優化方法 ...