原文鏈接:http://tecdat.cn/?p=18149 當我們將CNN(卷積神經網絡)模型用於訓練多維類型的數據(例如圖像)時,它們非常有用。我們還可以實現CNN模型進行回歸數據分析。我們之前使用Python進行CNN模型回歸 ,在本文中,我們在R中實現相同的方法。我們使用一維卷積 ...
原文鏈接:http: tecdat.cn p 無人駕駛汽車最早可以追溯到 年。神經網絡已經存在很長時間了,那么近年來引發人工智能和深度學習熱潮的原因是什么呢 秒 答案部分在於摩爾定律以及硬件和計算能力的顯著提高。我們現在可以事半功倍。顧名思義,神經網絡的概念是受我們自己大腦神經元網絡的啟發。神經元是非常長的細胞,每個細胞都有稱為樹突的突起,分別從周圍的神經元接收和傳播電化學信號。結果,我們的腦細胞 ...
2020-12-24 14:05 0 560 推薦指數:
原文鏈接:http://tecdat.cn/?p=18149 當我們將CNN(卷積神經網絡)模型用於訓練多維類型的數據(例如圖像)時,它們非常有用。我們還可以實現CNN模型進行回歸數據分析。我們之前使用Python進行CNN模型回歸 ,在本文中,我們在R中實現相同的方法。我們使用一維卷積 ...
原文鏈接:http://tecdat.cn/?p=15850 在本部分中,您將發現如何使用標准深度學習模型(包括多層感知器(MLP),卷積神經網絡(CNN)和遞歸神經網絡(RNN))開發,評估和做出預測。 開發多層感知器模型 多層感知器模型(簡稱MLP)是標准的全連接神經網絡模型 ...
原文鏈接:http://tecdat.cn/?p=19936 在本教程中,您將學習如何在R中創建神經網絡模型。 神經網絡(或人工神經網絡)具有通過樣本進行學習的能力。人工神經網絡是一種受生物神經元系統啟發的信息處理模型。它由大量高度互連的處理元件(稱為神經元)組成 ...
原文鏈接:http://tecdat.cn/?p=18726 自組織映射神經網絡(SOM)是一種無監督的數據可視化技術,可用於可視化低維(通常為2維)表示形式的高維數據集。在本文中,我們研究了如何使用R創建用於客戶細分的SOM。 SOM由1982年在芬蘭的Teuvo Kohonen首次 ...
原文鏈接:http://tecdat.cn/?p=19077 導入 自組織映射 (SOM)是一種工具,通過生成二維表示來可視化高維數據中的模式,在高維結構中顯示有意義的模式。通過以下方式使用給定的數據(或數據樣本)對SOM進行“訓練”: 定義了網格的大小。 網格中的每個單元 ...
在前面我們講述了DNN的模型與前向反向傳播算法。而在DNN大類中,卷積神經網絡(Convolutional Neural Networks,以下簡稱CNN)是最為成功的DNN特例之一。CNN廣泛的應用於圖像識別,當然現在也應用於NLP等其他領域,本文我們就對CNN的模型結構做一個總結 ...
原文鏈接:http://tecdat.cn/?p=16392 對於此示例,我將對R中的時間序列進行建模。我將最后24個觀察值保留為測試集,並將使用其余的觀察值來擬合神經網絡。當前有兩種類型的神經網絡可用,多層感知器;和極限學習機 ...
原文鏈接:http://tecdat.cn/?p=24057 原文出處:拓端數據部落公眾號 1.概要 本文的目標是使用各種預測模型預測Google的未來股價,然后分析各種模型。Google股票數據集是使用R中的Quantmod軟件包從Yahoo Finance獲得的。 2.簡介 預測 ...