1、寫在最前: 在此只是簡單在應用層面說明一下相關算法,嚴謹的數學知識,請大家參考最下面參考書目,后期有精力會進行細化,先占個坑。 2、基本知識: 泰勒展開式為: \[\begin{aligned} f(x) &=\frac{1}{0 !} f\left(x_ ...
1、寫在最前: 在此只是簡單在應用層面說明一下相關算法,嚴謹的數學知識,請大家參考最下面參考書目,后期有精力會進行細化,先占個坑。 2、基本知識: 泰勒展開式為: \[\begin{aligned} f(x) &=\frac{1}{0 !} f\left(x_ ...
使用阻尼牛頓法求解: 利用Amijio非精確線搜索 初始點x0=[0,0]',經條件1e-6或n=2000 代碼: %建立NTtest.m文件 clear all clc x0=[0,0]'; fun=@(x)100*(x(1)^2-x(2))^2+(x ...
計算步驟如下: 下面使用書中的練習y=exp(a*x^2+b*x+c)+w這個模型驗證一下,其中w為噪聲,a、b、c為待解算系數。 代碼如下: 迭代結果,其中散點為帶噪聲數據, ...
一、牛頓法 對於優化函數\(f(x)\),在\(x_0\)處泰勒展開, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其線性部分,忽略高階無窮小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...
注意修改目標函數和梯度函數(一階偏導函數)。 ...
寫在最前: 在此只是簡單在應用層面說明一下相關算法,嚴謹的數學知識,請大家參考最下面參考書目,后期有精力會進行細化,先占個坑。 基礎知識: 通常所說的最速下降法均指歐氏度量意義下的最速下降法,最速下降法用於求解無約束的非線性規划問題, 求解的問題可以描述為: \[\begin ...
阻尼牛頓法(Python實現) 使用牛頓方向,分別使用Armijo准則和Wolfe准則來求步長 求解方程 \(f(x_1,x_2)=(x_1^2-2)^4+(x_1-2x_2)^2\)的極小值 運行結果: ...
牛頓算法 對於優化函數\(f(x)\),\(x=(x_1;x_2;...;x_n)\),二階連續可導 在\(x_k\)處泰勒展開,取前三項,即對於優化函數二階擬合 \[f(x)=f(x_k)+g_k(x-x_k)+\frac{1}{2}(x-x_k)G_k(x-x_k ...