原文:文字識別網絡學習—seq2seq+attention

目前常用的文字識別網絡主要有兩種,一種是通過CRNN CTC的方法 參見CRNN ,一種是seq seq attention的方法。有說CTC方法優於seq seq attention的,但隨着attention機制的發展 self attention, transformer ,也許seq seq attention更有潛力,這里不做評價, 只是學習下seq seq用於文字識別的思想。 .se ...

2021-01-06 15:02 0 1304 推薦指數:

查看詳情

seq2seq+attention解讀

1什么是注意力機制? Attention是一種用於提升Encoder + Decoder模型的效果的機制。 2.Attention Mechanism原理 要介紹Attention Mechanism結構和原理,首先需要介紹下Seq2Seq模型的結構。Seq2Seq模型,想要解決 ...

Sun Nov 03 21:24:00 CST 2019 0 742
NLP與深度學習(三)Seq2Seq模型與Attention機制

1. Attention與Transformer模型 Attention機制與Transformer模型,以及基於Transformer模型的預訓練模型BERT的出現,對NLP領域產生了變革性提升。現在在大型NLP任務、比賽中,基本很少能見到RNN的影子了。大部分是BERT(或是其各種變體 ...

Thu Sep 02 08:45:00 CST 2021 0 286
深度學習seq2seq模型以及Attention機制

RNN,LSTM,seq2seq等模型廣泛用於自然語言處理以及回歸預測,本期詳解seq2seq模型以及attention機制的原理以及在回歸預測方向的運用。 1. seq2seq模型介紹   seq2seq模型是以編碼(Encode)和解碼(Decode)為代表的架構方式,seq2seq模型 ...

Wed Nov 15 02:49:00 CST 2017 0 8972
Seq2seqAttention模型到Self Attention

Seq2seq Seq2seq全名是Sequence-to-sequence,也就是從序列到序列的過程,是近年當紅的模型之一。Seq2seq被廣泛應用在機器翻譯、聊天機器人甚至是圖像生成文字等情境。 seq2seq 是一個Encoder–Decoder 結構的網絡,它的輸入是一個序列,輸出也是 ...

Thu Jul 04 04:22:00 CST 2019 0 887
Seq2Seq模型 與 Attention 策略

Seq2Seq模型 傳統的機器翻譯的方法往往是基於單詞與短語的統計,以及復雜的語法結構來完成的。基於序列的方式,可以看成兩步,分別是 Encoder 與 Decoder,Encoder 階段就是將輸入的單詞序列(單詞向量)變成上下文向量,然后 decoder根據這個向量來預測翻譯 ...

Sun May 19 00:43:00 CST 2019 0 1001
seq2seq聊天模型(三)—— attention 模型

注意力seq2seq模型 大部分的seq2seq模型,對所有的輸入,一視同仁,同等處理。 但實際上,輸出是由輸入的各個重點部分產生的。 比如: (舉例使用,實際比重不是這樣) 對於輸出“晚上”, 各個輸入所占比重: 今天-50%,晚上-50%,吃-100%,什么-0% 對於輸出“吃 ...

Sat Jan 26 20:44:00 CST 2019 0 603
Seq2SeqAttention機制入門介紹

Sequence Generation 引入 在循環神經網絡(RNN)入門詳細介紹一文中,我們簡單介紹了Seq2Seq,我們在這里展開一下 一個句子是由 characters(字) 或 words(詞) 組成的,中文的詞可能是由數個字構成的。 如果要用訓練RNN寫句子的話 ...

Sat Sep 28 05:44:00 CST 2019 0 568
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM