回歸 決策樹也可以用於執行回歸任務。我們首先用sk-learn的DecisionTreeRegressor類構造一顆回歸決策樹,並在一個帶噪聲的二次方數據集上進行訓練,指定max_depth=2: 下圖是這棵樹的結果: 這棵樹看起來與之前構造的分類樹類似。主要 ...
決策樹 決策樹 參考文獻 李航. 統計學習方法 M . 北京:清華大學出版社, 決策樹 前言:第一篇博客,最近看完決策樹,想着歸納一下,也方便自己以后回顧。寫的會比較全面一些,可能會有很多不太正確的地方,歡迎大家交流指正 : 決策樹模型: 決策樹模型是運用於分類以及回歸的一種樹結構。決策樹由節點和有向邊組成,一般一棵決策樹包含一個根節點 若干內部節點和若干葉節點。決策樹的決策過程需要從決策樹的根節 ...
2020-11-27 08:39 0 567 推薦指數:
回歸 決策樹也可以用於執行回歸任務。我們首先用sk-learn的DecisionTreeRegressor類構造一顆回歸決策樹,並在一個帶噪聲的二次方數據集上進行訓練,指定max_depth=2: 下圖是這棵樹的結果: 這棵樹看起來與之前構造的分類樹類似。主要 ...
決策樹常用於分類問題,但是也能解決回歸問題。 在回歸問題中,決策樹只能使用cart決策樹,而cart決策樹,既可以分類,也可以回歸。 所以我們說的回歸樹就是指cart樹。 為什么只能是cart樹 1. 回想下id3,分裂后需要計算每個類別占總樣本的比例,回歸哪來的類別,c4.5也一樣 ...
解決問題 實現基於特征范圍的樹狀遍歷的回歸。 解決方案 通過尋找樣本中最佳的特征以及特征值作為最佳分割點,構建一棵二叉樹。選擇最佳特征以及特征值的原理就是通過滿足函數最小。其實選擇的過程本質是對於訓練樣本的區間的分割,基於區間計算均值,最終區域的樣本均值即為預測值 ...
分類決策樹的概念和算法比較好理解,並且這方面的資料也很多。但是對於回歸決策樹的資料卻比較少,西瓜書上也只是提了一下,並沒有做深入的介紹,不知道是不是因為回歸樹用的比較少。實際上網上常見的房價預測的案例就是一個應用回歸樹的很好的案例,所以我覺得至少有必要把回歸樹的概念以及算法弄清楚 ...
決策樹 與SVM類似,決策樹在機器學習算法中是一個功能非常全面的算法,它可以執行分類與回歸任務,甚至是多輸出任務。決策樹的算法非常強大,即使是一些復雜的問題,也可以良好地擬合復雜數據集。決策樹同時也是隨機森林的基礎組件,隨機森林在當前是最強大的機器學習算法之一。 在這章我們會先討論如何使用 ...
決策樹分類 決策樹分類歸類於監督學習,能夠根據特征值一層一層的將數據集進行分類。它的有點在於計算復雜度不高,分類出的結果能夠很直觀的呈現,但是也會出現過度匹配的問題。使用ID3算法的決策樹分類第一步需要挑選出一個特征值,能夠將數據集最好的分類,之后遞歸構成分類樹。使用信息增益,來得到最佳 ...
決策樹的剪枝 決策樹為什么要剪枝?原因就是避免決策樹“過擬合”樣本。前面的算法生成的決策樹非常的詳細而龐大,每個屬性都被詳細地加以考慮,決策樹的樹葉節點所覆蓋的訓練樣本都是“純”的。因此用這個決策樹來對訓練樣本進行分類的話,你會發現對於訓練樣本而言,這個樹表現堪稱完美,它可以100%完美正確 ...
。 決策樹是通過一系列規則對數據進行分類的過程。它提供一種在什么條件下會得到什么值的類 ...