損失函數(Loss/Error Function): 計算單個訓練集的誤差,例如:歐氏距離,交叉熵,對比損失,合頁損失 代價函數(Cost Function): 計算整個訓練集所有損失之和的平均值 至於目標函數(Objective function),字面一些,就是有某個(最優 ...
最近學習遇到了代價函數,在網上搜索整理了幾個容易混淆的概念: 一 定義 損失函數定義在單個樣本上,算的是一個樣本的誤差。 代價函數定義在整個訓練集上,是所有樣本誤差的平均,也就是損失函數的平均。 目標函數定義為最終需要優化的函數,等於經驗風險 結構風險 也就是Cost Function 正則化項 。 損失函數和代價函數是同一個東西,目標函數是一個與他們相關但更廣的概念,對於目標函數來說在有約束條件 ...
2020-10-24 21:09 0 630 推薦指數:
損失函數(Loss/Error Function): 計算單個訓練集的誤差,例如:歐氏距離,交叉熵,對比損失,合頁損失 代價函數(Cost Function): 計算整個訓練集所有損失之和的平均值 至於目標函數(Objective function),字面一些,就是有某個(最優 ...
注:代價函數(有的地方也叫損失函數,Loss Function)在機器學習中的每一種算法中都很重要,因為訓練模型的過程就是優化代價函數的過程,代價函數對每個參數的偏導數就是梯度下降中提到的梯度,防止過擬合時添加的正則化項也是加在代價函數后面的。在學習相關算法的過程中,對代價函數的理解也在不斷的加深 ...
代價函數(有的地方也叫損失函數,Loss Function)在機器學習中的每一種算法中都很重要,因為訓練模型的過程就是優化代價函數的過程,代價函數對每個參數的偏導數就是梯度下降中提到的梯度,防止過擬合時添加的正則化項也是加在代價函數后面的。在學習相關算法的過程中,對代價函數的理解也在不斷的加深 ...
。 最小二乘法構建損失函數 最小二乘法也一種優化方法,用於求得目標函數的最優值。簡單 ...
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 損失函數可以看做 誤差部分(loss term) + 正則化部分 ...
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 損失函數可以看做 誤差 ...
線性回歸中提到最小二乘損失函數及其相關知識。對於這一部分知識不清楚的同學可以參考上一篇文章《線性回歸、梯度下降》。本篇文章主要講解使用最小二乘法法構建損失函數和最小化損失函數的方法。 最小二乘法構建損失函數 最小二乘法也一種優化方法,用於求得目標函數的最優值。簡單的說 ...
通常而言,損失函數由損失項(loss term)和正則項(regularization term)組成。發現一份不錯的介紹資料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures ...