目錄 強化學習中的關鍵概念 游戲案例 策略網絡 策略網絡的訓練 源碼實現 效果演示 參考資料 本文不再維護,請移步最新博客: https://zhuanlan.zhihu.com/p/408239932 強化學習中的關鍵 ...
目錄 Policy based方法 vs Value based方法 策略網絡 算法總體流程 如何通過對回歸任務的優化來更新Q網絡 為什么不可以同時更新Q網絡和目標網絡 為什么要使用帶有探索策略的Q函數 探索策略的數學表達 ReplayBuffer的作用 Q值被高估的問題 源碼實現 參考資料 DQN是Deep Q Network的縮寫,由Google Deep mind 團隊提出。 Policy ...
2020-09-30 15:00 0 486 推薦指數:
目錄 強化學習中的關鍵概念 游戲案例 策略網絡 策略網絡的訓練 源碼實現 效果演示 參考資料 本文不再維護,請移步最新博客: https://zhuanlan.zhihu.com/p/408239932 強化學習中的關鍵 ...
在強化學習(十)Double DQN (DDQN)中,我們講到了DDQN使用兩個Q網絡,用當前Q網絡計算最大Q值對應的動作,用目標Q網絡計算這個最大動作對應的目標Q值,進而消除貪婪法帶來的偏差。今天我們在DDQN的基礎上,對經驗回放部分的邏輯做優化。對應的算法是Prioritized ...
DQN 算法改進 (一)Dueling DQN Dueling DQN 是一種基於 DQN 的改進算法。主要突破點:利用模型結構將值函數表示成更加細致的形式,這使得模型能夠擁有更好的表現。下面給出公式,並定義一個新的變量: \[q(s_t, a_t)=v(s_t)+A(s_t, a_t ...
在強化學習(九)Deep Q-Learning進階之Nature DQN中,我們討論了Nature DQN的算法流程,它通過使用兩個相同的神經網絡,以解決數據樣本和網絡訓練之前的相關性。但是還是有其他值得優化的點,文本就關注於Nature DQN的一個改進版本: Double DQN算法 ...
Playing Atari with Deep Reinforcement Learning 論文地址 DQN 筆記 這篇文章就是DQN,DRL領域非常重要的一篇文章,也是David Silver大神的工作。文章本身沒有什么難度。 文章說了RL和DL 的兩個不同之處: DL ...
) A2C損失函數的構建 源碼實現 參考資料 在強化學習中,可以分為如下圖所示的兩種 ...
在強化學習(十一) Prioritized Replay DQN中,我們討論了對DQN的經驗回放池按權重采樣來優化DQN算法的方法,本文討論另一種優化方法,Dueling DQN。本章內容主要參考了ICML 2016的deep RL tutorial和Dueling DQN的論文< ...
1 概述 在之前介紹的幾種方法,我們對值函數一直有一個很大的限制,那就是它們需要用表格的形式表示。雖說表格形式對於求解有很大的幫助,但它也有自己的缺點。如果問題的狀態和行動的空間非常大,使用表格 ...