1、K-Means原理 K-Means算法的基本思想很簡單,對於給定的樣本集,按照樣本之間的距離大小,將樣本集划分為K個簇。讓簇內的點盡量緊密的連在一起,而讓簇間的距離盡量的大。 如果用數據表達式表示,假設簇划分為(C1,C2,...Ck),則我們的目標是最小化平方誤差E: \[E ...
這個算法中文名為k均值聚類算法,首先我們在二維的特殊條件下討論其實現的過程,方便大家理解。 第一步.隨機生成質心 由於這是一個無監督學習的算法,因此我們首先在一個二維的坐標軸下隨機給定一堆點,並隨即給定兩個質心,我們這個算法的目的就是將這一堆點根據它們自身的坐標特征分為兩類,因此選取了兩個質心,什么時候這一堆點能夠根據這兩個質心分為兩堆就對了。如下圖所示: 第二步.根據距離進行分類 紅色和藍色的點 ...
2020-09-13 09:24 0 777 推薦指數:
1、K-Means原理 K-Means算法的基本思想很簡單,對於給定的樣本集,按照樣本之間的距離大小,將樣本集划分為K個簇。讓簇內的點盡量緊密的連在一起,而讓簇間的距離盡量的大。 如果用數據表達式表示,假設簇划分為(C1,C2,...Ck),則我們的目標是最小化平方誤差E: \[E ...
背景與原理: 聚類問題與分類問題有一定的區別,分類問題是對每個訓練數據,我給定了類別的標簽,現在想要訓練一個模型使得對於測試數據能輸出正確的類別標簽,更多見於監督學習;而聚類問題則是我們給出了一組數據,我們並沒有預先的標簽,而是由機器考察這些數據之間的相似性,將相似的數據聚為一類,是無監督學習 ...
一、K-means算法原理 k-means算法是一種簡單的迭代型聚類算法,采用距離作為相似性指標,從而發現給定數據集中的K個類,且每個類的中心是根據類中所有值的均值得到,每個類用聚類中心來描述。對於給定的一個包含n個d維數據點的數據集X以及要分得的類別K,選取歐式距離作為相似度指標,聚類 ...
目錄 工作原理 python實現 算法實戰 對mnist數據集進行聚類 小結 附錄 工作原理 聚類是一種無監督的學習,它將相似的對象歸到同一個簇中。類似於全自動分類(自動的意思是連類別都是自動構建的)。K-均值算法可以發現 ...
0.聚類 聚類就是對大量的未知標注的數據集,按數據的內在相似性將數據集划分為多個類別,使類別內的數據相似度較大而類別間的數據相似度較小,聚類屬於無監督的學習方法。 1.內在相似性的度量 聚類是根據數據的內在的相似性進行的,那么我們應該怎么定義數據的內在的相似性呢?比較常見的方法 ...
python3 學習使用api 使用了網上的數據集,我把他下載到了本地 可以到我的git中下載數據集: https://github.com/linyi0604/MachineLearning 代碼: ...
二、基本的聚類分析算法 1. K均值(K-Means): 基於原型的、划分的距離技術,它試圖發現用戶指定 ...
這個算法中文名為k均值聚類算法,首先我們在二維的特殊條件下討論其實現的過程,方便大家理解。 第一步.隨機生成質心 由於這是一個無監督學習的算法,因此我們首先在一個二維的坐標軸下隨機給定一堆點,並隨即給定兩個質心,我們這個算法的目的就是將這一堆點根據它們自身的坐標特征分為兩類,因此選取了兩個質心 ...