原文:【機器學習與R語言】4-決策樹

目錄 .決策樹原理 .決策樹應用示例 . 收集數據 . 探索和准備數據 . 訓練模型 . 評估模型性能 . 提高模型性能 通過自適應增強算法 boosting 將懲罰因子分配到不同類型的錯誤上 .決策樹原理 決策樹:樹形結構流程圖 漏斗型 ,模型本身包含一些列邏輯決策。數據分類從根節點開始,根據特征值遍歷樹上的各個決策節點。 幾乎可應用於任何類型的數據建模,且性能不錯。但當數據有大量多層次的名義 ...

2020-09-01 23:14 0 1018 推薦指數:

查看詳情

機器學習-決策樹算法+代碼實現(基於R語言

分類決策樹)是一種十分常用的分類方法。核心任務是把數據分類到可能的對應類別。 他是一種監管學習,所謂監管學習就是給定一堆樣本,每個樣本都有一組屬性和一個類別,這些類別是事先確定的,通過學習得到一個分類器,這個分類器能夠對新出現的對象給出正確的分類。 決策樹的理解 熵的概念 ...

Fri Jun 07 20:42:00 CST 2019 0 2112
『原創』機器學習算法的R語言實現(二):決策樹算法

1、介紹 ​決策樹(decision tree)是一種有監督的機器學習算法,是一個分類算法。在給定訓練集的條件下,生成一個自頂而下的決策樹的根為起點,的葉子為樣本的分類,從根到葉子的路徑就是一個樣本進行分類的過程。 ​下圖為一個決策樹 ...

Wed Jun 25 04:40:00 CST 2014 8 6455
機器學習決策樹學習

決策樹是一個函數,以屬性值向量作為輸入,返回一個“決策”。 如上圖,我們輸入一系列屬性值(天氣狀況,濕度,有無風)后會得到一個要不要出去玩的一個決策。 從樣例構建決策樹 對於原始樣例集,我們選取一個最好的屬性將其分裂,這樣我們會產生多個樣例子集,同時我們會把該屬性從屬性集去掉,並且繼續 ...

Wed Feb 25 01:32:00 CST 2015 0 2245
機器學習(三)決策樹學習

一.簡介   決策樹學習是一種逼近離散值目標函數的方法,在這種方法中學習到的函數被表示為一棵決策樹。 二.決策樹的表示法   決策樹通過把實例從艮節點排列到某個葉子結點來分類實例,葉子結點即為實例所屬的分類。樹上的每一個結點指定了對實例的某個屬性的測試,並且該結點的每一個后繼分支對應於該屬性 ...

Fri May 31 03:00:00 CST 2013 0 35822
機器學習決策樹

決策樹(Decision Tree DT)   機器學習是從給定的訓練數據集學的一個模型用於對新示例進行分類,對於決策樹而言,我們希望決策樹的分支節點所包含的樣本盡可能屬於同一類別,即結點的“純度”越高越好,這樣可以避免多次無用的分類。有多種方法來衡量純度,此處介紹信息熵和基尼系數兩種 ...

Mon Sep 05 19:10:00 CST 2016 0 3105
機器學習-決策樹

一、決策樹   決策樹是一種簡單高效並且具有強解釋性的模型,廣泛應用於數據分析領域。其本質是一顆由多個判斷節點組成的,在使用模型進行預測時,根據輸入參數依次在各個判斷節點進行判斷游走,最后到葉子節點即為預測結果。   在數據挖掘中,決策樹主要有兩種類型:  分類 的輸出是樣本的類標 ...

Fri Jul 13 22:35:00 CST 2018 0 820
機器學習決策樹算法

下表為是否適合打壘球的決策表,預測E= {天氣=晴,溫度=適中,濕度=正常,風速=弱} 的場合,是否合適中打壘球。 天氣 溫度 濕度 風速 活動 晴 炎熱 ...

Sat Oct 28 17:49:00 CST 2017 0 8023
機器學習決策樹

table { margin: auto } 決策樹機器學習中非常基礎的算法,也是我研究生生涯學習到的第一個有監督模型,其中最基礎的ID3是1986年被發表出來的,一經發表,之后出現了眾多決策樹算法,不過最常見的還是C4.5和cart。在我的研究中,用不到決策樹,在天池或者Kaggle ...

Sat Aug 01 19:30:00 CST 2020 0 563
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM