【說明】 本文翻譯自新加坡國立大學何向南博士 et al.發布在《World Wide Web》(2017)上的一篇論文《Neural Collaborative Filtering》。本人英語水平一般+學術知識匱乏+語文水平拙劣,翻譯權當進一步理解論文和提高專業英語水平,translate ...
論文的翻譯:https: www.cnblogs.com HolyShine p .html 一 MF協同過濾的局限性 The innerproduct, which simply combines the multiplication of latent features linearly, may not be sufficient to capture the com plex struct ...
2020-08-25 15:17 0 738 推薦指數:
【說明】 本文翻譯自新加坡國立大學何向南博士 et al.發布在《World Wide Web》(2017)上的一篇論文《Neural Collaborative Filtering》。本人英語水平一般+學術知識匱乏+語文水平拙劣,翻譯權當進一步理解論文和提高專業英語水平,translate ...
協同過濾 collaborative filtering 人以類聚,物以群分 相似度 1. Jaccard 相似度 定義為兩個集合的交並比: Jaccard 距離,定義為 1 - J(A, B),衡量兩個集合的區分度: 為什么 Jaccard 不適合協同過濾?—— 只 ...
基本思想 基於用戶的協同過濾算法是通過用戶的歷史行為數據發現用戶對商品或內容的喜歡(如商品購買,收藏,內容評論或分享),並對這些喜好進行度量和打分。根據不同用戶對相同商品或內容的態度和偏好程度計算用戶之間的關系。在有相同喜好的用戶間進行商品推薦。簡單的說就是如果A,B兩個用戶都購買 ...
協同過濾常用於推薦系統,這項技術旨在填補 丟失的user-item關聯矩陣 的條目,spark.ml目前支持基於模型的協同過濾(用一些丟失條目的潛在因素在描述用戶和產品)。spark.ml使用ALS(交替最小二乘法)去學習這些潛在因素。在spark.ml中的實現有以下參數 ...
協同過濾(collaborative filtering )能自行學習所要使用的特征 如我們有某一個數據集,我們並不知道特征的值是多少,我們有一些用戶對電影的評分,但是我們並不知道每部電影的特征(即每部電影到底有多少浪漫成份,有多少動作成份) 假設我們通過采訪用戶得到每個用戶的喜好,如上圖 ...
1 引言 機器學習(Machine Learning)有很多經典的算法,其中基於深度神經網絡的深度學習算法目前最受追捧,主要是因為其因為擊敗李世石的阿爾法狗所用到的算法實際上就是基於神經網絡的深度學習算法。本文先介紹基本的神經元,然后簡單的感知機,擴展到多層神經網絡,多層前饋 ...
一、激活函數 激活函數也稱為響應函數,用於處理神經元的輸出,理想的激活函數如階躍函數,Sigmoid函數也常常作為激活函數使用。 在階躍函數中,1表示神經元處於興奮狀態,0表示神經元處於抑制狀態。 二、感知機 感知機是兩層神經元組成的神經網絡,感知機的權重調整方式如下所示 ...
ABSTRACT 主要點為用MLP來替換傳統CF算法中的內積操作來表示用戶和物品之間的交互關系. INTRODUCTION NeuCF設計了一個基於神經網絡結構的CF模型.文章使用的數據為隱式數據,想較於顯性數據,implicit feedback更容易獲取但比較難處理.文章的主要 ...