原文:強化學習實戰(1):gridworld

參考:https: orzyt.cn posts gridworld Reinforcement Learning: An Introduction 在第三章中給出了一個簡單的例子:Gridworld, 以幫助我們理解finite MDPs, 同時也求解了該問題的貝爾曼期望方程和貝爾曼最優方程. 本文簡要說明如何進行編程求解. 問題 下圖用一個矩形網格展示了一個簡單finite MDP Grid ...

2020-08-02 20:34 0 1004 推薦指數:

查看詳情

強化學習代碼實戰

一.概述   強化學習是根據獎勵信號以改進策略的機器學習方法。策略和獎勵是強化學習的核心元素。強化學習試圖找到最大化總獎勵的策略。強化學習不是監督學習,因為強化學習學習過程中沒有參考答案;強化學習也不是非監督學習,因為強化學習需要利用獎勵信號來學習。   強化學習任務常用“智能體/環境”接口 ...

Thu Nov 07 01:12:00 CST 2019 0 1047
強化學習總結

強化學習總結 強化學習的故事 強化學習學習一個最優策略(policy),可以讓本體(agent)在特定環境(environment)中,根據當前的狀態(state),做出行動(action),從而獲得最大回報(G or return)。 有限馬爾卡夫決策過程 馬爾卡夫決策過程理論 ...

Fri Mar 31 07:34:00 CST 2017 6 17833
強化學習——入門

強化學習強化學習作為一門靈感來源於心理學中的行為主義理論的學科,其內容涉及 概率論、統計學、逼近論、凸分析、計算復雜性理論、運籌學 等多學科知識,難度之大,門檻之高,導致其發展速度特別緩慢。 一種解釋: 人的一生其實都是不斷在強化學習,當你有個動作(action)在某個狀態 ...

Thu Sep 12 19:37:00 CST 2019 1 467
強化學習(MATLAB)

1. 定義 機器學習算法可以分為3種:有監督學習(Supervised Learning)、無監督學習(Unsupervised Learning)和強化學習(Reinforcement Learning)。強化學習(Reinforcement Learning, RL),又稱再勵學習、評價學習 ...

Wed Mar 25 00:51:00 CST 2020 1 9767
什么是強化學習

Reinforcement learning 是機器學習里面的一個分支,特別善於控制一只能夠在某個環境下 自主行動 的個體 (autonomous agent),透過和 環境 之間的互動,例如 sensory perception 和 rewards,而不斷改進它的 行為 。 聽到強化學習 ...

Mon May 18 03:36:00 CST 2015 1 11166
強化學習雜談

強化學習從入門到放棄 目錄 強化學習從入門到放棄 雜談 MDP MP MRP Bellman Equation MDP ...

Fri Jan 03 05:37:00 CST 2020 0 233
強化學習之CartPole

0x00 任務   通過強化學習算法完成倒立擺任務,控制倒立擺在一定范圍內擺動。 0x01 設置jupyter登錄密碼 jupyter notebook --generate-config jupyter notebook password (會輸入兩次密碼,用來驗證 ...

Tue Jun 15 01:04:00 CST 2021 0 266
強化學習6-MC與TD的比較-實戰

可以看到 隨着學習率的增大,效果越來越好,當學習率為0.5時,已經明顯過擬合了 這個是單步的,書上是單回合的,所以不同,后續有空會更新代碼 隨機行走有個特殊性:兩個終點,有一個終點獎勵為0,也就是說在前幾個回合中,單步更新的TD如果一開始向左走,需要 ...

Tue Feb 19 01:26:00 CST 2019 0 564
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM