原文:臨近梯度下降算法(Proximal Gradient Method)的推導以及優勢

關於次梯度 Subgradient ...

2020-07-03 21:33 0 1074 推薦指數:

查看詳情

近端梯度算法Proximal Gradient Descent)

L1正則化是一種常用的獲取稀疏解的手段,同時L1范數也是L0范數的松弛范數。求解L1正則化問題最常用的手段就是通過加速近端梯度算法來實現的。 考慮一個這樣的問題:   minx f(x)+λg(x) x∈Rn,f(x)∈R,這里f(x)是一個二階可微的凸函數,g(x)是一個凸函數(或許不可 ...

Wed Apr 26 02:06:00 CST 2017 1 10731
梯度下降算法gradient descent)

簡述 梯度下降法又被稱為最速下降法(Steepest descend method),其理論基礎是梯度的概念。梯度與方向導數的關系為:梯度的方向與取得最大方向導數值的方向一致,而梯度的模就是函數在該點的方向導數的最大值。 現在假設我們要求函數的最值,采用梯度下降法,如圖所示: 梯度下降的相關 ...

Tue Jan 02 04:05:00 CST 2018 0 3270
(二)深入梯度下降(Gradient Descent)算法

一直以來都以為自己對一些算法已經理解了,直到最近才發現,梯度下降都理解的不好。 1 問題的引出 對於上篇中講到的線性回歸,先化一個為一個特征θ1,θ0為偏置項,最后列出的誤差函數如下圖所示: 手動求解 目標是優化J(θ1),得到其最小化,下圖中的×為y(i),下面給出TrainSet ...

Mon Nov 09 01:34:00 CST 2015 3 96282
(二)深入梯度下降(Gradient Descent)算法

一直以來都以為自己對一些算法已經理解了,直到最近才發現,梯度下降都理解的不好。 1 問題的引出 對於上篇中講到的線性回歸,先化一個為一個特征θ1,θ0為偏置項,最后列出的誤差函數如下圖所示: 手動求解 目標是優化J(θ1),得到其最小化,下圖中的×為y(i),下面給出TrainSet ...

Sun Aug 26 22:38:00 CST 2018 0 777
梯度下降和EM算法,kmeans的em推導

I. 牛頓迭代法給定一個復雜的非線性函數f(x),希望求它的最小值,我們一般可以這樣做,假定它足夠光滑,那么它的最小值也就是它的極小值點,滿足f′(x0)=0,然后可以轉化為求方程f′(x)=0的根了 ...

Thu Aug 03 01:08:00 CST 2017 1 2064
梯度下降Gradient descent)

梯度下降Gradient descent) 在有監督學習中,我們通常會構造一個損失函數來衡量實際輸出和訓練標簽間的差異。通過不斷更新參數,來使損失函數的值盡可能的小。梯度下降就是用來計算如何更新參數使得損失函數的值達到最小值(可能是局部最小或者全局最小)。 梯度下降計算流程 假設 ...

Sat Aug 18 03:38:00 CST 2018 0 1465
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM