原文:Python機器學習(七十九)Keras 評估模型

模型訓練好后,就可以使用測試數據評估模型的性能。 到此為止,我們已經完成了一個完整的Keras應用。進一步了解Keras,可參考更多Keras例子。 完整代碼 下面是本教程的完整代碼: 運行輸出: ...

2020-06-21 20:52 0 1191 推薦指數:

查看詳情

二、機器學習模型評估

二、機器學習模型評估 2.1 模型評估:基本概念 錯誤率(Error Rate) 預測錯誤的樣本數a占樣本總數的比例m \[E=\frac{a}{m} \] 准確率(Accuracy) 准確率=1-錯誤率准確率=1−錯誤率 誤差 ...

Wed Jul 21 22:14:00 CST 2021 0 138
機器學習模型評估

'沒有測量,就沒有科學'這是科學家門捷列夫的名言。在計算機科學特別是機器學習領域中,對模型評估同樣至關重要,只有選擇與問題相匹配的評估方法,才能快速地發現模型選擇或訓練過程中出現的問題,迭代地對模型進行優化。模型評估主要分為離線評估和在線評估兩個階段。針對分類、排序、回歸、序列預測等不同類 ...

Sat Jun 22 01:37:00 CST 2019 0 1420
python大戰機器學習——模型評估、選擇與驗證

1、損失函數和風險函數 (1)損失函數:常見的有 0-1損失函數 絕對損失函數 平方損失函數 對數損失函數 (2)風險函數:損失函數的期望 經驗風險:模型在數據集T上的平均損失   根據大數定律,當N趨向於∞時,經驗風險趨向於風險函數 2、模型評估方法 (1)訓練誤差 ...

Sat Oct 21 06:33:00 CST 2017 0 2174
python 機器學習模型評估和調參

在做數據處理時,需要用到不同的手法,如特征標准化,主成分分析,等等會重復用到某些參數,sklearn中提供了管道,可以一次性的解決該問題 先展示先通常的做法 ...

Sun Oct 28 22:08:00 CST 2018 1 3088
python 機器學習模型評估和調參

在做數據處理時,需要用到不同的手法,如特征標准化,主成分分析,等等會重復用到某些參數,sklearn中提供了管道,可以一次性的解決該問題 先展示先通常的做法 先對數據標准化,然 ...

Fri Dec 22 19:48:00 CST 2017 0 6125
機器學習模型評估指標總結

本文對機器學習模型評估指標進行了完整總結。機器學習的數據集一般被划分為訓練集和測試集,訓練集用於訓練模型,測試集則用於評估模型。針對不同的機器學習問題(分類、排序、回歸、序列預測等),評估指標決定了我們如何衡量模型的好壞 一、Accuracy 准確率是最簡單的評價指標,公式 ...

Mon Jul 05 22:52:00 CST 2021 0 162
機器學習模型評估指標匯總

在使用機器學習算法過程中,針對不同的問題需要不用的模型評估標准,這里統一匯總。主要以兩大類分類與回歸分別闡述。 一、分類問題 1、混淆矩陣 混淆矩陣是監督學習中的一種可視化工具,主要用於比較分類結果和實例的真實信息。矩陣中的每一行代表實例的預測類別,每一列代表實例的真實類別 ...

Tue Aug 07 02:14:00 CST 2018 1 18533
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM