Transformer英文的意思就是變形金剛,Transformer現在有一個非常知名的應用,這個應用叫做BERT,BERT就是非監督的Transformer,Transformer是一個seq2se ...
問題:越深越好 層數越多,參數越多,model比較復雜,數據又多的話,本來誤差就越小,這為什么歸因於 深 呢 矮胖結構 v.s. 高瘦結構 真正要比較 深 和 淺 的model的時候,要讓它們的參數一樣多。 淺 的model就會是一個矮胖的model, 深 的model就會是一個瘦高的model 選擇兩個參數個數接近的model 層,每層 個神經元的誤差是 . 層,每層 個神經元的誤差是 . 從上 ...
2020-06-03 20:58 0 662 推薦指數:
Transformer英文的意思就是變形金剛,Transformer現在有一個非常知名的應用,這個應用叫做BERT,BERT就是非監督的Transformer,Transformer是一個seq2se ...
李宏毅深度學習筆記 https://datawhalechina.github.io/leeml-notes 李宏毅深度學習視頻 https://www.bilibili.com/video/BV1JE411g7XF step1 神經網絡 激活函數是sigmoid,紅色圈是一組神經元,每個 ...
P1 一、線性回歸中的模型選擇 上圖所示: 五個模型,一個比一個復雜,其中所包含的function就越多,這樣就有更大幾率找到一個合適的參數集來更好的擬合訓練集。所以,隨着模型的復雜度提 ...
半監督學習 什么是半監督學習? 大家知道在監督學習里,有一大堆的訓練數據(由input和output對組成)。例如上圖所示\(x^r\)是一張圖片,\(y^r\)是類別的label。 半監督學習是說,在label數據上面,有另外一組unlabeled的數據,寫成\(x^u ...
李宏毅深度學習筆記 https://datawhalechina.github.io/leeml-notes 李宏毅深度學習視頻 https://www.bilibili.com/video/BV1JE411g7XF 背景 梯度下降 假設有很多參數\(\theta\) 選擇一組初始值 ...
在講Sequence Generation之前,再復習下RNN和有門的RNN(LSTM,GRU) 之前告訴你說,RNN是一個有記憶的神經網絡,但今天從另外一個角度來講RNN。我們說RNN特別 ...
李宏毅深度學習筆記 https://datawhalechina.github.io/leeml-notes 李宏毅深度學習視頻 https://www.bilibili.com/video/BV1JE411g7XF 普通的梯度下降法 學習率\(\eta\)是個超參數需要人工調整 ...
李宏毅深度學習筆記 https://datawhalechina.github.io/leeml-notes 李宏毅深度學習視頻 https://www.bilibili.com/video/BV1JE411g7XF 假設有兩個類別,label為1和-1 如果用回歸的方式擬合模型,那么目標 ...