一.簡介 支持向量機(svm)的想法與前面介紹的感知機模型類似,找一個超平面將正負樣本分開,但svm的想法要更深入了一步,它要求正負樣本中離超平面最近的點的距離要盡可能的大,所以svm模型建模可以分為兩個子問題: (1)分的對:怎么能讓超平面將正負樣本分的開; (2)分的好:怎么能讓距離超平面 ...
一.簡介 上一節介紹了硬間隔支持向量機,它可以在嚴格線性可分的數據集上工作的很好,但對於非嚴格線性可分的情況往往就表現很差了,比如: PS:請多試幾次,生成含噪聲點的數據 那怕僅含有一個異常點,對硬間隔支持向量機的訓練影響就很大,我們希望它能具有一定的包容能力,容忍哪些放錯的點,但又不能容忍過度,我們可以引入變量 xi 和一個超參 C 來進行控制,原始的優化問題更新為如下: min w,b, xi ...
2020-05-21 08:28 0 759 推薦指數:
一.簡介 支持向量機(svm)的想法與前面介紹的感知機模型類似,找一個超平面將正負樣本分開,但svm的想法要更深入了一步,它要求正負樣本中離超平面最近的點的距離要盡可能的大,所以svm模型建模可以分為兩個子問題: (1)分的對:怎么能讓超平面將正負樣本分的開; (2)分的好:怎么能讓距離超平面 ...
一.簡介 前兩節分別實現了硬間隔支持向量機與軟間隔支持向量機,它們本質上都是線性分類器,只是軟間隔對“異常點”更加寬容,它們對形如如下的螺旋數據都沒法進行良好分類,因為沒法找到一個直線(超平面)能將其分隔開,必須使用曲線(超曲面)才能將其分隔,而核技巧便是處理這類問題的一種常用 ...
感謝中國人民大學胡鶴老師,課程深入淺出,非常好 一、關於SVM 可以做線性分類、非線性分類、線性回歸等,相比邏輯回歸、線性回歸、決策樹等模型(非神經網絡)功效最好 傳統線性分類:選出兩堆數據的質心,並做中垂線(准確性低)——上圖左 SVM:擬合的不是一條線,而是兩條平行線,且這兩條 ...
SVM--簡介 支持向量機(Support Vector Machines)是一種二分類模型,它的目的是尋找一個超平面來對樣本進行分割,分割的原則是間隔最大化,最終轉化為一個凸二次規划問題來求解。 在機器學習領域,是一個有監督的學習模型,通常用來進行 ...
支持向量機—SVM原理代碼實現 本文系作者原創,轉載請注明出處:https://www.cnblogs.com/further-further-further/p ...
前面已經對感知機和SVM進行了簡要的概述,本節是SVM算法的實現過程用於輔助理解SVM算法的具體內容,然后借助sklearn對SVM工具包進行實現。 SVM算法的核心是SMO算法的實現,首先對SMO算法過程進行實現,先對一些輔助函數進行定義: 然后實現一個簡化版 ...
1. 感知機原理(Perceptron) 2. 感知機(Perceptron)基本形式和對偶形式實現 3. 支持向量機(SVM)拉格朗日對偶性(KKT) 4. 支持向量機(SVM)原理 5. 支持向量機(SVM)軟間隔 6. 支持向量機(SVM)核函數 1. 前言 在前一篇支持向量機 ...
對於線性不可分的數據集,可以利用核函數(kernel)將數據轉換成易於分類器理解的形式。 如下圖,如果在x軸和y軸構成的坐標系中插入直線進行分類的話, 不能得到理想的結果,或許我們可以對圓中的數 ...