申明:因為看的這個課老師講的有點亂,課程也有的章節少那么幾小節。所以對一些東西沒理解透徹,而且有些亂。 所以,望理解,等以后學的更深刻了再回來修改。 1.ROC與AOC ROC與AU ...
目錄 一 有監督學習方法舉例 . 朴素貝葉斯分類 二 無監督學習方法舉例 . K means 三 參考資料 一 有監督學習方法舉例 . 朴素貝葉斯分類 朴素貝葉斯分類是一種十分簡單的分類算法,朴素貝葉斯的思想基礎是這樣的:對於給出的待分類項,求解在此項出現的條件下各個類別出現的概率,哪個最大,就認為此待分類項屬於哪個類別。 通俗來說,就像我們坐地鐵的時候,僅僅通過一些衣着特征我們便能夠猜測周圍人 ...
2020-05-19 16:00 0 546 推薦指數:
申明:因為看的這個課老師講的有點亂,課程也有的章節少那么幾小節。所以對一些東西沒理解透徹,而且有些亂。 所以,望理解,等以后學的更深刻了再回來修改。 1.ROC與AOC ROC與AU ...
Naive Bayes-朴素貝葉斯 Bayes’ theorem(貝葉斯法則) 在概率論和統計學中,Bayes’ theorem(貝葉斯法則)根據事件的先驗知識描述事件的概率。貝葉斯法則表達式如下所示 P(A|B) – 在事件B下事件A發生的條件概率 P(B|A) – 在事件A下事件B發生 ...
一、概率基礎 概率定義:概率定義為一件事情發生的可能性,例如,隨機拋硬幣,正面朝上的概率。 聯合概率:包含多個條件,且所有條 ...
很多人都聽說過貝葉斯原理,在哪聽說過?基本上是在學概率統計的時候知道的。有些人可能會說,我記不住這些概率論的公式,沒關系,我盡量用通俗易懂的語言進行講解。 /*請尊重作者勞動成果,轉載請標明原文鏈接:*/ /* https://www.cnblogs.com/jpcflyer/p ...
最近一直在看機器學習相關的算法,今天我們學習一種基於概率論的分類算法—朴素貝葉斯。本文在對朴素貝葉斯進行簡單介紹之后,通過Python編程加以實現。 一 朴素貝葉斯概述 ...
的條件下都是條件獨立的。 1、朴素貝葉斯朴素在哪里? 簡單來說:利用貝葉斯定理求解聯合概率P( ...
概率分類器: 朴素貝葉斯是一種直接衡量標簽和特征質檢的概率關系的有監督學習算法, 是一種專注分類的算法, 朴素貝葉斯的算法根源是基於概率論和數理統計的貝葉斯理論, 因此它是根正苗紅的概率模型. 關鍵概念: 聯合概率: X取值為x和Y的取值為y, 兩個事件同時發生的概率, 表示 ...
簡介 朴素貝葉斯是一種基於概率進行分類的算法,跟之前的邏輯回歸有些相似,兩者都使用了概率和最大似然的思想。但與邏輯回歸不同的是,朴素貝葉斯通過先驗概率和似然概率計算樣本在每個分類下的概率,並將其歸為概率值最大的那個分類。朴素貝葉斯適用於文本分類、垃圾郵件處理等NLP下的多分類問題。 核心 ...