簡介:最近在看邏輯回歸算法,在算法構建模型的過程中需要對參數進行求解,采用的方法有梯度下降法和無約束項優化算法。之前對無約束項優化算法並不是很了解,於是在學習邏輯回歸之前,先對無約束項優化算法中經典的算法學習了一下。下面將無約束項優化算法的細節進行描述。為了尊重別人的勞動成果,本文的出處 ...
一.簡介 通過前面幾節的介紹,大家可以直觀的感受到:對於大部分機器學習模型,我們通常會將其轉化為一個優化問題,由於模型通常較為復雜,難以直接計算其解析解,我們會采用迭代式的優化手段,用數學語言描述如下: min v k f x k v k 這里目標函數為 f x ,當前優化變量為 v k ,目標即是找到一個 v k 對當前的 x k 進行更新,使得函數值盡可能的降低,如果目標函數一階可微,對其作一 ...
2020-05-18 23:24 0 1427 推薦指數:
簡介:最近在看邏輯回歸算法,在算法構建模型的過程中需要對參數進行求解,采用的方法有梯度下降法和無約束項優化算法。之前對無約束項優化算法並不是很了解,於是在學習邏輯回歸之前,先對無約束項優化算法中經典的算法學習了一下。下面將無約束項優化算法的細節進行描述。為了尊重別人的勞動成果,本文的出處 ...
牛頓法 ...
牛頓法 考慮如下無約束極小化問題: $$\min_{x} f(x)$$ 其中$x\in R^N$,並且假設$f(x)$為凸函數,二階可微。當前點記為$x_k$,最優點記為$x^*$。 梯度下降法用的是一階偏導,牛頓法用二階偏導。以標量為例,在當前點進行泰勒二階展開: $$\varphi ...
提要:今天講的牛頓法與擬牛頓法是求解無約束問題最優化方法的常用方法。 一 牛頓法 假設我們求下面函數的最小值: 假設f(x)具有連續的二階的連續偏導數,假設第K次迭代值為xk的值,那么可將f(X)在xk附近進行二階泰勒展開得到: 我們對上述公式求導可得: 假設其中可逆 ...
擬牛頓法(Python實現) 使用擬牛頓法(BFGS和DFP),分別使用Armijo准則和Wolfe准則來求步長 求解方程 \(f(x_1,x_2)=(x_1^2-2)^4+(x_1-2x_2)^2\)的極小值 運行結果 ...
一、牛頓法 對於優化函數\(f(x)\),在\(x_0\)處泰勒展開, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其線性部分,忽略高階無窮小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...
一、BFGS算法 在“優化算法——擬牛頓法之BFGS算法”中,我們得到了BFGS算法的校正公式: 利用Sherman-Morrison公式可對上式進行變換,得到 令,則得到: 二、BGFS算法存在的問題 在BFGS算法中。每次都要 ...
特點 相較於: 最優化算法3【擬牛頓法1】 BFGS算法使用秩二矩陣校正hesse矩陣的近似矩陣\(B\),即: \[B_{k+1}=B_k+\alpha\mu_k\mu_k^T+\beta\nu_k\nu_k^T \] 算法分析 將函數在\(x_{k+1}\)處二階展開 ...