1. LDA描述 線性判別分析(Linear Discriminant Analysis,LDA)是一種有監督學習算法,同時經常被用來對數據進行降維,它是Ronald Disher在1936年發明的,有些資料上也稱位Fisher LDA.LDA是目前機器學習、數據挖掘領域中經典且熱門的一種算法 ...
Fisher線性判別 Fisher判別法介紹 Fisher判別法是判別分析的方法之一,它是借助於方差分析的思想,利用已知各總體抽取的樣品的p維觀察值構造一個或多個線性判別函數y l x其中l l ,l lp ,x x ,x , ,xp ,使不同總體之間的離差 記為B 盡可能地大,而同一總體內的離差 記為E 盡可能地小來確定判別系數l l ,l lp 。數學上證明判別系數l恰好是 B E 的特征根 ...
2020-05-06 17:29 0 751 推薦指數:
1. LDA描述 線性判別分析(Linear Discriminant Analysis,LDA)是一種有監督學習算法,同時經常被用來對數據進行降維,它是Ronald Disher在1936年發明的,有些資料上也稱位Fisher LDA.LDA是目前機器學習、數據挖掘領域中經典且熱門的一種算法 ...
前言在之前的一篇博客機器學習中的數學(7)——PCA的數學原理中深入講解了,PCA的數學原理。談到PCA就不得不談LDA,他們就像是一對孿生兄弟,總是被人們放在一起學習,比較。這這篇博客中我們就來談談LDA模型。由於水平有限,積累還不夠,有不足之處還望指點。下面就進入正題吧。 為什么要用LDA ...
前面我們簡要說明了貝葉斯學習的內容。由公式可以看出來,我們假定已經知道了似然概率的密度函數的信息,才能進行后驗概率的預測。但有的時候,這些信息可能是不方便求出來的。因此,密度函數自身的估計問題成為了一個必須考慮的問題。 第一種思考的方法是跳出估計密度函數的問題,直接對樣本集使用線性回歸 ...
之前簡要地介紹了一下線性判別函數的的基本性質,接下來我們進行更加詳細的討論。 文中大部分公式和圖表來自 MLPP 和 PRML 我們將樣本的分布用多元正態分布來近似,為了更加了解這個表達式的含義,我們對協方差矩陣做特征值分解,即Σ = UΛUT 然后將協方差矩陣的逆用同樣方法分解 ...
1.概述 線性判別式分析(Linear Discriminant Analysis),簡稱為LDA。也稱為Fisher線性判別(Fisher Linear Discriminant,FLD),是模式識別的經典算法,在1996年由Belhumeur引入模式識別 ...
Fisher線性判別分析 1、概述 在使用統計方法處理模式識別問題時,往往是在低維空間展開研究,然而實際中數據往往是高維的,基於統計的方法往往很難求解,因此降維成了解決問題的突破口。 假設數據存在於d維空間中,在數學上,通過投影使數據映射到一條直線上,即維度從d維變為1維,這是容易實現 ...
本文在我的上一篇博文 機器學習-特征選擇(降維) 線性判別式分析(LDA) 的基礎上進一步介紹核Fisher LDA算法。 之前我們介紹的LDA或者Fisher LDA都是線性模型,該模型簡單,對噪音的魯棒性較好,不容易過擬合,但是,簡單模型的表達能力會弱一些,為了增加LDA算法 ...
特征選擇(亦即降維)是數據預處理中非常重要的一個步驟。對於分類來說,特征選擇可以從眾多的特征中選擇對分類最重要的那些特征,去除原數據中的噪音。主成分分析(PCA)與線性判別式分析(LDA)是兩種最常用的特征選擇算法。關於PCA的介紹,可以見我的另一篇博文。這里主要介紹線性判別式分析(LDA ...