目錄 Softmax回歸 損失函數 圖片分類數據集 Softmax回歸從零開始實現 Softmax回歸簡潔實現 QA Softmax回歸 首先簡單理解softmax:就是將一個回歸值轉換成一個概率(也就是把一個實數,定在[0,1.]中 ...
摘抄自https: tangshusen.me Dive into DL PyTorch chapter DL basics . fashion mnist 在介紹softmax回歸的實現前我們先引入一個多類圖像分類數據集。它將在后面的章節中被多次使用,以方便我們觀察比較算法之間在模型精度和計算效率上的區別。圖像分類數據集中最常用的是手寫數字識別數據集MNIST 。但大部分模型在MNIST上的分類 ...
2020-05-02 20:12 0 737 推薦指數:
目錄 Softmax回歸 損失函數 圖片分類數據集 Softmax回歸從零開始實現 Softmax回歸簡潔實現 QA Softmax回歸 首先簡單理解softmax:就是將一個回歸值轉換成一個概率(也就是把一個實數,定在[0,1.]中 ...
pytorch實現對Fashion-MNIST數據集進行圖像分類 導入所需模塊: 對數據集的操作(讀取數據集): 由於像素值為0到255的整數,所以剛好是uint8所能表示的范圍,包括transforms.ToTensor()在內的一些關於圖片的函數就默認輸入的是uint8型,若不是 ...
NI-DL 應用框架:圖像分類,目標檢測,分割提取。 底層:TensorFlow,Keras,Cuda,C/C++ 上層:VC++,C#.NET Winform 源碼編譯,支持本地部署,雲部署。 圖像分類:點擊查看 (本文) 目標檢測:點擊查看 圖像分割:點擊查看 ...
基於CNN的CIFAR10圖像分類 完整代碼如下: cifar10教程補充內容 更優選的網絡,類似VGG 這個網絡比前面那個准確率更高一些. 顯示圖片及標簽 顯示一些訓練集中的照片: 顯示預測結果和實際結果: ...
一、前言 1、前廣泛使用的圖像分類數據集之一是 MNIST 數據集,雖然它是很不錯的基准數據集,但按今天的標准,即使是簡單的模型也能達到95%以上的分類准確率,因此不適合區分強模型和弱模型。 2、為了提高難度,我們將在接下來的章節中討論在2017年發布的性質相似但相對復雜 ...
第5章圖像分類的數據集 在我們實際進入到代碼編寫階段來構建分類器之前,我們首先回顧下在本書中用到的數據集。一些數據集可理想的獲得大於95%的准確率,另一些則還在開放研究階段,還有一些是圖像分類競賽的部分數據集。 現在就對這些數據集進行回顧是很重要的,這樣我們就可以在以后的章節中對我們在使用 ...
任務目標 對MNIST手寫數字數據集進行訓練和評估,最終使得模型能夠在測試集上達到\(98\%\)的正確率。(最終本文達到了\(99.36\%\)) 使用的庫的版本: python:3.8.12 pytorch:1.5.1 代碼地址GitHub:https ...
深度學習現在越來越火,也越來越多的研究工作人員用深度學習研究生物醫學圖像。 以上三張圖片是成年人的大腦核磁共振圖像,從左至右分別表示正常人、輕微某病、嚴重某病。 現在我在用深度學習(BP神經網絡、CNN卷積神經網絡、遷移學習等)在研究如何分類。 我會將我的最新研究結果以及使用到的算法通過此博客 ...