原文:決策樹學習——回歸樹

回歸樹也是一種決策樹,不過它處理的數據標簽不是屬於分類的,也就是說它的標簽是一個連續隨機的值,比如說對一個城市的房價的預測,每個月的房價都是隨機波動的值,不像分類任務,要將所有數據根據標簽進行分類。 重要參數 屬性 接口 criterion:回歸樹衡量分枝質量的指標,支持的標准有三種: 輸入 mse 使用均方誤差mean squared error MSE ,父節點和葉子節點之間的均方誤差的差額 ...

2020-05-14 16:20 0 981 推薦指數:

查看詳情

決策樹-回歸

決策樹常用於分類問題,但是也能解決回歸問題。 在回歸問題中,決策樹只能使用cart決策樹,而cart決策樹,既可以分類,也可以回歸。 所以我們說的回歸就是指cart。 為什么只能是cart 1. 回想下id3,分裂后需要計算每個類別占總樣本的比例,回歸哪來的類別,c4.5也一樣 ...

Mon Apr 08 02:45:00 CST 2019 0 1161
決策樹回歸

解決問題   實現基於特征范圍的樹狀遍歷的回歸。 解決方案   通過尋找樣本中最佳的特征以及特征值作為最佳分割點,構建一棵二叉樹。選擇最佳特征以及特征值的原理就是通過滿足函數最小。其實選擇的過程本質是對於訓練樣本的區間的分割,基於區間計算均值,最終區域的樣本均值即為預測值 ...

Thu Jan 09 03:15:00 CST 2020 0 2710
決策樹(二)決策樹回歸

回歸 決策樹也可以用於執行回歸任務。我們首先用sk-learn的DecisionTreeRegressor類構造一顆回歸決策樹,並在一個帶噪聲的二次方數據集上進行訓練,指定max_depth=2: 下圖是這棵的結果: 這棵看起來與之前構造的分類類似。主要 ...

Mon Mar 02 20:09:00 CST 2020 0 1443
回歸決策樹

分類決策樹的概念和算法比較好理解,並且這方面的資料也很多。但是對於回歸決策樹的資料卻比較少,西瓜書上也只是提了一下,並沒有做深入的介紹,不知道是不是因為回歸用的比較少。實際上網上常見的房價預測的案例就是一個應用回歸的很好的案例,所以我覺得至少有必要把回歸的概念以及算法弄清楚 ...

Sun May 19 05:41:00 CST 2019 0 717
決策樹(分類回歸

決策樹 決策樹 參考文獻 [1] 李航. 統計學習方法[M]. 北京:清華大學出版社,2012 決策樹 前言:第一篇博客,最近看完決策樹,想着歸納一下,也方便自己以后回顧。寫的會比較全面一些,可能會有很多不太正確的地方,歡迎大家交流指正 : ) 決策樹模型: 決策樹模型 ...

Fri Nov 27 16:39:00 CST 2020 0 567
機器學習--決策樹回歸及剪枝算法

上一篇介紹了決策樹之分類構造的幾種方法,本文主要介紹使用CART算法構建回歸及剪枝算法實現。主要包括以下內容: 1、CART回歸的介紹 2、二元切分的實現 3、總方差法划分特征 4、回歸的構建 5、回歸的測試與應用 6、剪枝算法 一、CART回歸的介紹 回歸與分類 ...

Tue Jan 23 09:08:00 CST 2018 1 6806
決策樹-回歸問題

(6,6)決定它對應的輸出。第一維分量6介於5和8之間,第二維分量6小於8,根據此決策樹很容易判斷(6, ...

Fri Apr 12 00:34:00 CST 2019 0 1005
Sklearn_決策樹_回歸

DecisionTreeRegressor---回歸 一.重要參數 criterion: 1)輸入"mse"使用均方誤差mean squared error(MSE),父節點和葉子節點之間的均方誤差的差額將被用來作為 特征選擇的標准,這種方法通過使用葉子節點的均值來最小化L2損失 ...

Tue May 05 05:55:00 CST 2020 0 1115
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM