單變量線性回歸 在這個文檔中將會介紹單變量線性回歸模型的建立和公式推倒,通過實例的代碼實現算法來加深理解 一.模型推導 1-1 線性回歸模型 設定樣本描述為 \[x=(x_1;x_2;...;x_d) \] 預測函數為 \[f(\boldsymbol x ...
公式法推導 已知數據集 X,Y ,X Y 均為列向量,列內第 i 行代表 X Y 的一個樣本 xi yi 假設 X 和 Y 滿足線性映射:Y WTX 則預測值與真實值之間的誤差 距離 為 PS:因為 YTXw 是一個實數,因此YTXw wTXTY 則權重矩陣 w 的最小二乘估計值為: 幾何法推導 假設 X,Y 是高維向量 維度大於 預測空間為二維空間,即預測函數將高維向量 X 映射到二維空間如下 ...
2020-04-04 14:13 0 1063 推薦指數:
單變量線性回歸 在這個文檔中將會介紹單變量線性回歸模型的建立和公式推倒,通過實例的代碼實現算法來加深理解 一.模型推導 1-1 線性回歸模型 設定樣本描述為 \[x=(x_1;x_2;...;x_d) \] 預測函數為 \[f(\boldsymbol x ...
在之前的文章《機器學習---線性回歸(Machine Learning Linear Regression)》中說到,使用最小二乘回歸模型需要滿足一些假設條件。但是這些假設條件卻往往是人們容易忽略的地方。如果不考慮模型的適用情況,就只會得到錯誤的模型。下面來看一下,使用最小二乘回歸模型需要滿足 ...
輸出是一個連續的數值。 模型表示 對於一個目標值,它可能受到多個特征的加權影響。例如寶可夢精靈的進化的 cp 值,它不僅受到進化前的 cp 值的影響,還可能與寶可夢的 hp 值、類型、高度以及重量相關。因此,對於寶可夢進化后的 cp 值,我們可以用如下線性公式來表示: \[y=b+ ...
回歸是統計學中最有力的工具之一。機器學習監督學習算法分為分類算法和回歸算法兩種,其實就是根據類別標簽分布類型為離散型、連續性而定義的。回歸算法用於連續型分布預測,針對的是數值型的樣本,使用回歸,可以在給定輸入的時候預測出一個數值,這是對分類方法的提升,因為這樣可以預測連續型數據而不僅僅是離散的類別 ...
前情提要:關於logistic regression,其實本來這章我是不想說的,但是剛看到嶺回歸了,我感覺還是有必要來說一下。 一:最小二乘法 最小二乘法的基本思想:基於均方誤差最小化來進行模型求解的方法。在線性回歸中,最小二乘法就是試圖找到一條直線,使所有樣本到直線上的歐氏距離之和最小 ...
Decomposition 假設現在要解一個線性系統: Ax = b, 其中 A 是 n×n 非奇異方陣,對於任意的向量 ...
,通常采用最小二乘法作為其解法(可通過最大似然估計推得)。 最小二乘法是通過最小化誤差的平方和尋找數據的 ...
引言如果要將極大似然估計應用到線性回歸模型中,模型的復雜度會被兩個因素所控制:基函數的數目(的維數)和樣本的數目。盡管為對數極大似然估計加上一個正則項(或者是參數的先驗分布),在一定程度上可以限制模型的復雜度,防止過擬合,但基函數的選擇對模型的性能仍然起着決定性的作用。 上面說了那么大 ...