來自書籍:TensorFlow深度學習 一、卷積神經網絡 1、卷積層 卷積核:kernel 步長:stride 填充:padding padding = same:如步長=2,卷積核掃描結束后還剩 1 個元素,不夠卷積核掃描了,這個時候就在后面補 1 個零,補完 ...
來自書籍:TensorFlow深度學習 一 神經網絡介紹 全連接層 前向傳播 張量方式實現:tf.matmul 層方式實現: layers.Dense 輸出節點數,激活函數 ,輸入節點數函數自動獲取 fc.kernel:獲取權值矩陣 W fc.bias:獲取偏置向量 b fc.trainable variables:返回待優化參數列表 fc.non trainable variables:不需要優 ...
2020-03-25 17:34 0 1551 推薦指數:
來自書籍:TensorFlow深度學習 一、卷積神經網絡 1、卷積層 卷積核:kernel 步長:stride 填充:padding padding = same:如步長=2,卷積核掃描結束后還剩 1 個元素,不夠卷積核掃描了,這個時候就在后面補 1 個零,補完 ...
卷積神經網絡的訓練過程 卷積神經網絡的訓練過程分為兩個階段。第一個階段是數據由低層次向高層次傳播的階段,即前向傳播階段。另外一個階段是,當前向傳播得出的結果與預期不相符時,將誤差從高層次向底層次進行傳播訓練的階段,即反向傳播階段。訓練過程如圖4-1所示。訓練過程為: 1、網絡進行權值的初始化 ...
在定義了損失函數之后,需要通過優化器來尋找最小損失,下面介紹一些常見的優化方法。 (BGD,SGD,MBGD,Momentum,NAG,Adagrad,Adadelta,RMSprop,Adam,A ...
GAN最不好理解的就是Loss函數的定義和訓練過程,這里用一段代碼來輔助理解,就能明白到底是怎么回事。其實GAN的損失函數並沒有特殊之處,就是常用的binary_crossentropy,關鍵在於訓練過程中存在兩個神經網絡和兩個損失函數。 這里generator並不 ...
寫在前面 各式資料中關於BP神經網絡的講解已經足夠全面詳盡,故不在此過多贅述。本文重點在於由一個“最簡單”的神經網絡練習推導其訓練過程,和大家一起在練習中一起更好理解神經網絡訓練過程。 一、BP神經網絡 1.1 簡介 BP網絡(Back-Propagation Network ...
神經網絡訓練的過程可以分為三個步驟 1.定義神經網絡的結構和前向傳播的輸出結果 2.定義損失函數以及選擇反向傳播優化的算法 3.生成會話並在訓練數據上反復運行反向傳播優化算法 神經元 神經元是構成神經網絡的最小單位,神經元的結構如下 一個神經元可以有多個輸入和一個輸出,每個神經 ...
Keras是基於Tensorflow(以前還可以基於別的底層張量庫,現在已並入TF)的高層API庫。它幫我們實現了一系列經典的神經網絡層(全連接層、卷積層、循環層等),以及簡潔的迭代模型的接口,讓我們能在模型層面寫代碼,從而不用仔細考慮模型各層張量之間的數據流動。 但是,當我們有了全新 ...
一、實操 下面進行的模型訓練為偽代碼,一般用tensorflow不會用到這種方式來訓練模型,這個只是用來作為對上一篇常用函數的使用,方便熟悉代碼以及訓練時梯度是如何計算的。 輸出結果: ...