原文:基於python3的可視化數據聚類系統(k-means算法和k-中心點算法)

用戶界面 點擊讀取文件按鈕,讀取到的文件如下圖所示: 數據聚類系統讀取文件 數據聚類系統導入文件 設置簇的個數,這里設置成 ,並選擇K means聚類算法,顯示的結果如下圖: 數據聚類系統運行K means聚類算法 設置簇的個數,這里設置成 ,並選擇K 中心點聚類算法,顯示的結果如下圖: 數據聚類系統運行K 中心點聚類算法 清屏,顯示的結果如下圖: 數據聚類系統清屏 實驗源碼 編譯環境為Spyd ...

2020-03-10 18:23 0 3547 推薦指數:

查看詳情

K-均值(K-means聚類算法

聚類是一種無監督的學習,它將相似的對象歸到同一個簇中。 這篇文章介紹一種稱為K-均值的聚類算法,之所以稱為K-均值是因為它可以發現k個不同的簇,且每個簇的中心采用簇中所含值的均值計算而成。 聚類分析視圖將相似對象歸入同一簇,將不相似對象歸到不同簇。 下面用Python簡單演示該算法實現 ...

Sun Sep 10 08:52:00 CST 2017 0 1282
算法K-Means聚類算法k-平均或k-均值)

1.聚類算法和分類算法的區別 a)分類 分類(Categorization or Classification)就是按照某種標准給對象貼標簽(label),再根據標簽來區分歸類。 舉例: 假如你有一堆動物的頭像圖片樣本,想把它們進行分類,分成:貓,狗,魚等。當在有新的動物圖片進來之后,能夠 ...

Thu Aug 25 06:33:00 CST 2016 0 6243
k-means聚類算法python實現

K-means聚類算法 算法優缺點: 優點:容易實現缺點:可能收斂到局部最小值,在大規模數據集上收斂較慢使用數據類型:數值型數據 算法思想 k-means算法實際上就是通過計算不同樣本間的距離來判斷他們的相近關系的,相近的就會放到同一個類別中去 ...

Fri Nov 28 08:53:00 CST 2014 8 65141
聚類算法——K-means(上)

  首先要來了解的一個概念就是聚類,簡單地說就是把相似的東西分到一組,同 Classification (分類)不同,對於一個 classifier ,通常需要你告訴它“這個東西被分為某某類”這樣一些例子,理想情況下,一個 classifier 會從它得到的訓練集中進行“學習”,從而具備對未知數據 ...

Fri Mar 09 04:44:00 CST 2012 3 60315
K-means聚類算法

一、思想 聚類:人以群分、物以類聚,使得簇內的距離接近,簇間距離遠。 可以做推薦冷啟動,區域推薦熱榜、用戶畫像 二、算法步驟: 1、隨機設置K個特征空間內的點作為初始的聚類中心 2、對於其他每個點計算到K中心的距離,從中選出距離最近的⼀個點作為⾃⼰的標記 3、接着對着標記 ...

Tue Nov 02 17:47:00 CST 2021 0 425
K-Means 聚類算法

K-Means 概念定義: K-Means 是一種基於距離的排他的聚類划分方法。 上面的 K-Means 描述中包含了幾個概念: 聚類(Clustering):K-Means 是一種聚類分析(Cluster Analysis)方法。聚類就是將數據對象分組成為多個類或者簇 ...

Tue Feb 10 07:06:00 CST 2015 3 17123
K-means聚類算法

1.原文:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html K-means也是聚類算法中最簡單的一種了,但是里面包含的思想卻是不一般。最早我使用並實現這個算法是在學習韓爺爺那本數據挖掘的書中,那本書比較注重應用 ...

Sun Nov 09 00:57:00 CST 2014 0 11297
K-Means聚類算法

聚類分析是在數據中發現數據對象之間的關系,將數據進行分組,組內的相似性越大,組間的差別越大,則聚類效果越好。 不同的簇類型 聚類旨在發現有用的對象簇,在現實中我們用到很多的簇的類型,使用不同的簇類型划分數據的結果是不同的,如下的幾種簇類型。 明顯分離的 可以看到(a)中不同組中任意兩點 ...

Tue Jan 16 04:15:00 CST 2018 0 8335
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM