一、概述 線性回歸是利用數理統計中的回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法,在機器學習中屬於監督學習。在數據分析等領域應用十分廣泛。 很多情況下我們都用它進行預測,比如預測房屋價格。在這里用一個簡單的例子來說明,假設有一組房屋數據,為了理解方便,假設 ...
一、概述 線性回歸是利用數理統計中的回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法,在機器學習中屬於監督學習。在數據分析等領域應用十分廣泛。 很多情況下我們都用它進行預測,比如預測房屋價格。在這里用一個簡單的例子來說明,假設有一組房屋數據,為了理解方便,假設 ...
sklearn中實現隨機梯度下降法 隨機梯度下降法是一種根據模擬退火的原理對損失函數進行最小化的一種計算方式,在sklearn中主要用於多元線性回歸算法中,是一種比較高效的最優化方法,其中的梯度下降系數(即學習率eta)隨着遍歷過程的進行在不斷地減小。另外,在運用隨機梯度下降法之前需要利用 ...
1、梯度下降(gradient decent) 梯度下降方法是我們求最優化的常用方法。常用的有批量梯度下降和隨機梯度下降。 對於一個目標函數;我們目的min(J(Θ)), α是learningrate,表示每次向梯度負方向下降的步長,經過一次次迭代,向最優解收斂,如下圖 ...
隨機梯度下降 幾乎所有的深度學習算法都用到了一個非常重要的算法:隨機梯度下降(stochastic gradient descent,SGD) 隨機梯度下降是梯度下降算法的一個擴展 機器學習中一個反復出現的問題: 好的泛化需要大的訓練集,但是大的訓練集的計算代價也更大 ...
本文主要使用了對數幾率回歸法與線性判別法(LDA)對數據集(西瓜3.0)進行分類。其中在對數幾率回歸法中,求解最優權重W時,分別使用梯度下降法,隨機梯度下降與牛頓法。 代碼如下: View Code 結果: 牛頓法: 迭代 5步:w ...
線性回歸與梯度下降算法 作者:上品物語 轉載自:線性回歸與梯度下降算法講解 知識點: 線性回歸概念 梯度下降算法 l 批量梯度下降算法 l 隨機梯度下降算法 l 算法收斂判斷方法 1.1 線性回歸 在統計學中 ...
https://www.cnblogs.com/lliuye/p/9451903.html 梯度下降法作為機器學習中較常使用的優化算法,其有着三種不同的形式:批量梯度下降(Batch Gradient Descent)、隨機梯度下降(Stochastic Gradient Descent ...
梯度下降法作為機器學習中較常使用的優化算法,其有着三種不同的形式:批量梯度下降(Batch Gradient Descent)、隨機梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降 ...