簡單易學的機器學習算法——神經網絡BP神經網絡

一、BP神經網絡的概念 BP神經網絡是一種多層的前饋神經網絡,其基本的特點是:信號是前向傳播的,而誤差是反向傳播的。詳細來說。對於例如以下的僅僅含一個隱層的神經網絡模型: watermark/2/text ...

Fri May 26 03:42:00 CST 2017 0 1670
機器學習(4):BP神經網絡原理及其python實現

BP神經網絡是深度學習的重要基礎,它是深度學習的重要前行算法之一,因此理解BP神經網絡原理以及實現技巧非常有必要。接下來,我們對原理和實現展開討論。 1.原理    有空再慢慢補上,請先參考老外一篇不錯的文章:A Step by Step Backpropagation Example ...

Wed Jul 05 05:11:00 CST 2017 0 1630
機器學習:python使用BP神經網絡示例

1.簡介(只是簡單介紹下理論內容幫助理解下面的代碼,如果自己寫代碼實現此理論不夠) 1) BP神經網絡是一種多層網絡算法,其核心是反向傳播誤差,即: 使用梯度下降法(或其他算法),通過反向傳播來不斷調整網絡的權值和閾值,使網絡的誤差平方和最小。 BP神經網絡模型拓撲 ...

Tue May 16 23:12:00 CST 2017 0 3334
機器學習-神經網絡算法(一)

1. 背景: 1.1 以人腦中的神經網絡為啟發,歷史上出現過很多不同版本 1.2 最著名的算法是1980年的 backpropagation 2. 多層向前神經網絡(Multilayer Feed-Forward Neural Network ...

Mon Feb 25 02:58:00 CST 2019 0 1564
機器學習 —— 基礎整理(七)前饋神經網絡BP反向傳播算法步驟整理

這里把按 [1] 推導的BP算法(Backpropagation)步驟整理一下。突然想整理這個的原因是知乎上看到了一個帥呆了的求矩陣微分的方法(也就是 [2]),不得不感嘆作者的功力。[1] 中直接使用矩陣微分的記號進行推導,整個過程十分簡潔。而且這種矩陣形式有一個非常大的優勢就是對照 ...

Sun Mar 19 06:08:00 CST 2017 0 1817
神經網絡機器學習》第5講隨機梯度下降算法-BP起源

神經網絡機器學習 第5章 隨機梯度下降法-BP的起源 神經網絡的訓練有很多方法,以數值優化為基礎的隨機梯度學習算法能夠處理大規模的數據集合,它也是后面多層神經網絡后向傳播算法的基礎。 隨機梯度下降是以均方誤差為目標函數的近似最速下降算法,該算法被廣泛用於自適應信號處理領域 ...

Sat Feb 06 03:30:00 CST 2021 0 341
python機器學習——BP(反向傳播)神經網絡算法

背景與原理: BP神經網絡通常指基於誤差反向傳播算法的多層神經網絡BP算法由信號的前向傳播和反向傳播兩個過程組成,在前向傳播的過程中,輸入從輸入層進入網絡,經過隱含層逐層傳遞到達輸出層輸出,如果輸出結果與預期不符那么轉至誤差反向傳播過程,否則結束學習過程。在反向傳播過程中,誤差會基於梯度下降 ...

Wed Apr 06 06:51:00 CST 2022 0 1696
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM