梯度爆炸/消失 梯度消失 : 參數更新過小,在每次更新時幾乎不會移動,導致模型無法學習。 梯度爆炸 : 參數更新過大,破壞了模型的穩定收斂。 具體的可以參考沐神D2l文章:http://zh.d2l.ai/chapter_multilayer-perceptrons ...
梯度消失 梯度爆炸以及Kaggle房價預測 梯度消失和梯度爆炸 考慮到環境因素的其他問題 Kaggle房價預測 梯度消失和梯度爆炸 深度模型有關數值穩定性的典型問題是消失 vanishing 和爆炸 explosion 。 當神經網絡的層數較多時,模型的數值穩定性容易變差。 假設一個層數為L 的多層感知機的第l l 層H l 的權重參數為W l ,輸出層H L 的權重參數為W L 。為了便於討論 ...
2020-02-18 00:18 0 1276 推薦指數:
梯度爆炸/消失 梯度消失 : 參數更新過小,在每次更新時幾乎不會移動,導致模型無法學習。 梯度爆炸 : 參數更新過大,破壞了模型的穩定收斂。 具體的可以參考沐神D2l文章:http://zh.d2l.ai/chapter_multilayer-perceptrons ...
那么為什么會出現梯度消失的現象呢?因為通常神經網絡所用的激活函數是sigmoid函數,這個函數有個特點,就是能將負無窮到正無窮的數映射到0和1之間,並且對這個函數求導的結果是f′(x)=f(x)(1−f(x))。因此兩個0到1之間的數相乘,得到的結果就會變得很小了。神經網絡的反向傳播是逐層對函數偏 ...
梯度消失或爆炸問題: http://blog.csdn.net/qq_29133371/article/details/51867856 ...
目錄 梯度消失 梯度爆炸 參考資料 以下圖的全連接神經網絡為例,來演示梯度爆炸和梯度消失: 梯度消失 在模型參數w都是(-1,1)之間的數的前提下,如果激活函數選擇的是sigmod(x),那么他的導函數σ’(x ...
1.梯度消失 根據鏈式法則,如果每一層神經元對上一層的輸出的偏導乘上權重結果都小於1的話,那么即使這個結果是0.99,在經過足夠多層傳播之后,誤差對輸入層的偏導會趨於0。 這種情況會導致靠近輸入層的隱含層神經元調整極小。 2.梯度膨脹 根據鏈式法則,如果每一層神經元對上一層的輸出的偏導乘上 ...
一、梯度消失、梯度爆炸產生的原因 說白了,對於1.1 1.2,其實就是矩陣的高次冪導致的。在多層神經網絡中,影響因素主要是權值和激活函數的偏導數。 1.1 前饋網絡 假設存在一個網絡結構如圖: 其表達式為: 若要對於w1求梯度,根據鏈式求導法則,得到的解 ...
1.為什么使用梯度下降來優化神經網絡參數? 反向傳播(用於優化神網參數):根據損失函數計算的誤差通過反向傳播的方式,指導深度網絡參數的更新優化。 采取反向傳播的原因:首先,深層網絡由許多線性層和非線性層堆疊而來,每一層非線性層都可以視為是一個非線性函數(非線性來自於非線性 ...
梯度消失和梯度爆炸的解決之道 參考<機器學習煉丹術> 因為梯度不穩定,因此產生梯度消失和梯度爆炸的問題 出現原因 梯度消失和梯度爆炸是指前面幾層的梯度,因為鏈式法則不斷乘小於(大於)1的數,導致梯度非常小(大)的現象; sigmoid導數最大0.25,一般都是梯度消失問題 ...