原:http://www.cnblogs.com/DjangoBlog/p/6476332.html 綜述 如果已經有一個足夠強大的機器學習算法,為了獲得更好的性能,最靠譜的方法之一是給這個算法以更多的數據。機器學習界甚至有個說法:“有時候勝出者並非有最好的算法,而是有更多的數據 ...
什么是監督學習 無監督學習 強化學習 弱監督學習 半監督學習 多示例學習 隨着機器學習問題不斷深入人心,人們也將現實中遇到不同的問題分為不同的學習方式,其中,最基礎的應屬監督學習,無監督學習和強化學習了。 監督學習 supervised learning :已知數據和其一一對應的標簽,訓練一個智能算法,將輸入數據映射到標簽的過程。監督學習是最常見的學習問題之一,就是人們口中常說的分類問題。比如已知 ...
2020-02-14 17:52 0 767 推薦指數:
原:http://www.cnblogs.com/DjangoBlog/p/6476332.html 綜述 如果已經有一個足夠強大的機器學習算法,為了獲得更好的性能,最靠譜的方法之一是給這個算法以更多的數據。機器學習界甚至有個說法:“有時候勝出者並非有最好的算法,而是有更多的數據 ...
概念 有監督學習:訓練數據既有特征(feature)又有標簽(label),通過訓練,讓機器可以自己找到特征和標簽之間的聯系,在面對只有特征沒有標簽的數據時,可以判斷出標簽。 無監督學習(unsupervised learning):訓練樣本的標記信息未知,目標是通過對無標記訓練樣本的學習 ...
的機器學習。統計學習的方法是基於數據構建概率統計模型從而對數據進行預測與分析,一般包括監督學習、無監督學習 ...
定義 有監督學習是機器學習任務的一種。它從有標記的訓練數據中推導出預測函數。有標記的訓練數據是指每個訓練實例都包括輸入和期望的輸出。一句話:給定數據,預測標簽。 無監督學習是機器學習任務的一種。它從無標記的訓練數據中推斷結論。最典型的無監督學習就是聚類分析,它可以在探索性數據分析 ...
監督學習(Supervised learning) 監督學習即具有特征(feature)和標簽(label)的,即使數據是沒有標簽的,也可以通過學習特征和標簽之間的關系,判斷出標簽--分類。 簡而言之:提供數據,預測標簽。比如對動物貓和狗圖片進行預測,預測label為cat或者dog ...
自監督(self-supervised)既可以認為是有監督(supervised)也可以認為是無監督(unsupervised),主要取決於如何定義有監督。 自監督學習(Self-supervised Learning):是指直接從大規模的無監督數據中挖掘自身監督信息來進行監督學習 ...
參考網址:https://www.jianshu.com/p/9b2826ef8a28 1、有監督學習:通過已有的訓練樣本去訓練得到一個最優模型,再利用這個模型將所有的輸入映射為相應的輸出,對輸出進行簡單的判斷從而實現預測和分類的目的,也就具有了對未知數據進行預測和分類的能力 ...
等應用 機器學習的分類 監督學習 (Supervised Learning) ...