強化學習傳說:第五章 基於模型的強化學習 無模型的方法是通過agent不斷探索環境,不斷試錯,不斷學習,因此導致了無模型的方法數據效率不高。而基於模型的方法則相反,它能夠充分利用已有的模型,高效地利用數據。 簡單的思路: 先訓練得到環境模型,再利用規划求解。但是本來專家算法就是這么做 ...
回顧KDD A Taxi Order Dispatch Model based On Combinatorial Optimization 最大化全局的匹配概率 基於貝葉斯框架來預測用戶目的地 KDD Large Scale Order Dispatch in On Demand Ride Hailing Platforms: A Learning and Planning Approach MD ...
2020-02-03 13:14 0 870 推薦指數:
強化學習傳說:第五章 基於模型的強化學習 無模型的方法是通過agent不斷探索環境,不斷試錯,不斷學習,因此導致了無模型的方法數據效率不高。而基於模型的方法則相反,它能夠充分利用已有的模型,高效地利用數據。 簡單的思路: 先訓練得到環境模型,再利用規划求解。但是本來專家算法就是這么做 ...
Deep Recurrent Q-Learning for Partially Observable MDPs 論文地址 DRQN 筆記 DQN 每一個decision time 需要該時刻前4個frame 來獲得完整的狀態信息。但是有的游戲四張圖片也不能獲取完整的狀態信息。所以這篇論文 ...
Deep Reinforcement Learning with Double Q-learning 論文地址: Double-DQN Double Q-learning 筆記 在傳統強化學習領域里面,學者們已經認識到了Q-learning 存在overestimate的問題 ...
Deterministic Policy Gradient Algorithms 論文地址 DPG 筆記 出發點 首先最開始提出的policy gradient 算法是 stochastic的。 這里的隨機是指隨機策略\(\pi_\theta(a|s)=P[a|s,;\theta ...
的論文的研究主題非常多樣,涵蓋深度學習模型/架構/理論、強化學習、優化方法、在線學習、生成模型、遷移學 ...
Dueling Network Architectures for Deep Reinforcement Learning 論文地址 DuelingDQN 筆記 基本思路就是\(Q(s,a)\)的值既和state有關,又和action有關。但是兩種"有關"的程度不一樣,或者說影響力 ...
Playing Atari with Deep Reinforcement Learning 論文地址 DQN 筆記 這篇文章就是DQN,DRL領域非常重要的一篇文章,也是David Silver大神的工作。文章本身沒有什么難度。 文章說了RL和DL 的兩個不同之處: DL ...
Reinforcement Learning with Deep Energy-Based Policies 論文地址 soft Q-learning 筆記 標准的強化學習策略 \[\begin{equation}\pi^*_{std} = \underset{\pi ...