...
...
線性方程組問題可以利用矩陣變換求解。利用高斯消元法,將矩陣轉換成一個行階梯矩陣,最后得到一個簡化行階梯矩陣,就是方程的解。參考資料(高斯消元法) Java代碼 復雜度分析 該算法的時間復雜度為O(n^3),空間復雜度為O(n^2)。對於維度不高的線性方程還是可以接受。 ...
做數據結構課設時候查的資料,主要是看求逆矩陣方面的知識的。 選主元的高斯-約當(Gauss-Jordan)消元法在很多地方都會用到,例如求一個矩陣的逆矩陣、解線性方程組(插一句:LM算法求解的一個步驟),等等。它的速度不是最快的,但是它非常穩定(來自網上的定義:一個計算方法,如果在使用 ...
蒟蒻 Nanjo_Qi 前天考了一次試……第一題就華麗麗地爆零了。 解一次方程組我會啊,但是解一千個有百來八十個未知數的……棄了棄了orz。 考完了才知道有高斯消元這個神奇的東西,於是就去簡單了解了一下。 高斯消元法是線性代數規划中的一個算法,可用 ...
這里的消元法,主要是針對矩陣$A$可逆的情況下(如果$A$不可逆消元后不好回代),即線性方程組只有唯一解的情況下,有多解的情況的解法在后面介紹。 目前我們用於解線性方程組的方法依然是Gauss消元法。在Gauss消元法中,我們將右側向量b與A寫在一起作為一個增廣 ...
warning:有bug待修 今天的線性代數課學了高斯消元解線性方程組,感覺很有意思,於是寫了一個c語言小程序,功能如下: 1.把輸入的矩陣經過初等變換,變成行階梯形矩陣 2.判斷方程組解的情況 3.如果有唯一解,輸出方程組的解 實現的思路是枚舉每一列,第i列從a[i+1][i ...
題目傳送門 一、高斯消元 \(O(n^3)\) 通過初等行變換把增廣矩陣化為階梯型矩陣並回代得到方程的解。 適用於求解 包含\(n\) 個方程,\(n\) 個未知數的多元線性方程組。 例如該方程組 $ \left\{ \begin{array}{lc} a_ ...
此文章依 CC 4.0 BY-SA 版權協議轉載自 ShineEternal 的博客 -1. 序言 說到線性方程組,大家第一反應大概就是高斯消元,本文將對其詳細講解並配合例題與相關方法為您呈現。 本文因圖文並茂有較多配圖且講解詳細較多,再過多的放置代碼會引起文章的冗長以及閱讀的不適,故只將 ...