1 引言 特征提取和特征選擇作為機器學習的重點內容,可以將原始數據轉換為更能代表預測模型的潛在問題和特征的過程,可以通過挑選最相關的特征,提取特征和創造特征來實現。要想學習特征選擇必然要了解什么是特征提取和特征創造,得到數據的特征之后對特征進行精煉,這時候就要用到特征選擇。本文主要介紹 ...
概述:上節咱們說了特征工程是機器學習的一個核心內容。然后咱們已經學習了特征工程中的基礎內容,分別是missing value handling和categorical data encoding的一些方法技巧。但是光會前面的一些內容,還不足以應付實際的工作中的很多情況,例如如果咱們的原始數據的features太多,咱們應該選擇那些features作為咱們訓練的features 或者咱們的feat ...
2020-01-19 12:09 1 1302 推薦指數:
1 引言 特征提取和特征選擇作為機器學習的重點內容,可以將原始數據轉換為更能代表預測模型的潛在問題和特征的過程,可以通過挑選最相關的特征,提取特征和創造特征來實現。要想學習特征選擇必然要了解什么是特征提取和特征創造,得到數據的特征之后對特征進行精煉,這時候就要用到特征選擇。本文主要介紹 ...
python3學習使用api 使用到聯網的數據集,我已經下載到本地,可以到我的git中下載數據集 git: https://github.com/linyi0604/MachineLearning 代碼: 生成的准確率圖: ...
注: 這個報告是我在10年7月的時候寫的(博士一年級),最近整理電腦的時候翻到,當時初學一些KDD上的paper的時候總結的,現在拿出來分享一下。 畢竟是初學的時候寫的,有些東西的看法也在變化,看的 ...
原文:http://www.cnblogs.com/xbinworld/archive/2012/11/27/2791504.html 機器學習-特征選擇 Feature Selection 研究報告 注: 這個報告是我在10年7月的時候寫的(博士一年級),最近整理電腦的時候翻到 ...
特征選擇 主要思想:包裹式(封裝器法)從初始特征集合中不斷的選擇特征子集,訓練學習器,根據學習器的性能來對子集進行評價,直到選擇出最佳的子集。包裹式特征選擇直接針對給定學習器進行優化 案例一、封裝器法 常用實現方法:循序特征選擇。 循序 ...
原文鏈接:https://developers.google.com/machine-learning/crash-course/feature-crosses/ 特征組合是指兩個或多個特征相乘形成的合成特征。特征的相乘組合可以提供超出這些特征單獨能夠提供的預測能力。 1- 對非線性規律進行 ...
不多說,直接上干貨! ...
如何找出模型需要的特征?首先要找到該領域的業務專家,讓他們給一些建議。比如我們需要解決一個葯品療效的分類問題,那么先找到領域專家,向他們咨詢哪些因素(特征)會對該葯品的療效產生影響,較大影響和較小影響的因素都要。這些因素就是我們特征的第一候選集。(摘自:https ...