一、MSE、RMSE、MAE 思路:測試數據集中的點,距離模型的平均距離越小,該模型越精確 # 注:使用平均距離,而不是所有測試樣本的距離和,因為距離和受樣本數量的影響 1)公式: MSE:均方誤差 RMSE:均方根誤差 MAE ...
四 衡量回歸的性能指標 均方誤差 MSE Mean Squared Error 其中y i表示第 i 個樣本的真實標簽,p i表示模型對第 i 個樣本的預測標簽。 線性回歸的目的就是讓損失函數最小。那么模型訓練出來了,我們在測試集上用損失函數來評估模型就行了。 均方根誤差 RMSE Root Mean Squard Error RMSE 其實就是 MSE 開個根號。有什么意義呢 其實實質是一樣的。 ...
2020-01-13 17:20 0 1121 推薦指數:
一、MSE、RMSE、MAE 思路:測試數據集中的點,距離模型的平均距離越小,該模型越精確 # 注:使用平均距離,而不是所有測試樣本的距離和,因為距離和受樣本數量的影響 1)公式: MSE:均方誤差 RMSE:均方根誤差 MAE ...
五、衡量分類任務的性能指標 5、ROC曲線與AUC (1)ROC曲線 ROC曲線( Receiver Operating Cha\fracteristic Curve )描述的 TPR ( True Positive Rate )與 FPR ( False Positive ...
分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。下面一一介紹 均方誤差(MSE) MSE (Mean Squared Error)叫做均方誤差。看公式 這里的y是測試集 ...
分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。 MSE和MAE適用於誤差相對明顯的時候,大的誤差也有比較高的權重,RMSE則是針對誤差不是很明顯的時候;MAE是一個線性的指標,所有個體差異在平均值上均等加權 ...
2 模型評估與選擇 2.1評估方法 2.1.1訓練集和測試集 實例1:鳶尾花數據集(Iris) 鳶尾花數據集(Iris)是一個經典數據集。數據集內包含 3 類共 150 條記錄 ...
前言 分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。下面一一介紹 均方誤差(MSE) MSE (Mean Squared Error)叫做均方誤差。看公式 ...
,MAE、R-Squared 1.均方誤差(MSE) MSE (Mean Squared Error ...
六、sklearn中的分類性能指標 機器學習中常使用 sklearn 完成對模型分類性能的評估,我們需要掌握使用 sklearn 提供的以下接口: accuracy_score 准確度 precision_score 精准率 recall_score 召回率 ...