其實應該叫做指數加權平均梯度下降法。 ...
最陡下降法 steepest descent method 又稱梯度下降法 英語:Gradient descent 是一個一階最優化算法。 函數值下降最快的方向是什么 沿負梯度方向d amp x gk d gk ...
2020-01-05 02:07 0 674 推薦指數:
其實應該叫做指數加權平均梯度下降法。 ...
在此記錄使用matlab作梯度下降法(GD)求函數極值的一個例子: 問題設定: 1. 我們有一個$n$個數據點,每個數據點是一個$d$維的向量,向量組成一個data矩陣$\mathbf{X}\in \mathbb{R}^{n\times d}$,這是我們的輸入特征矩陣 ...
1.最速下降方向 函數f(x)在點x處沿方向d的變化率可用方向導數來表示。對於可微函數,方向導數等於梯度與方向的內積,即: Df(x;d) = ▽f(x)Td, 因此,求函數f(x)在點x處的下降最快的方向,可歸結為求解下列非線性規划: min ▽f(x)Td s.t. ||d ...
norm(A,p)當A是向量時norm(A,p) Returns sum(abs(A).^zhip)^(/p), for any <= p <= ∞.norm(A) Returns nor ...
轉載請注明出處:http://www.cnblogs.com/Peyton-Li/ 在求解機器學習算法的優化問題時,梯度下降是經常采用的方法之一。 梯度下降不一定能夠找到全局最優解,有可能是一個局部最優解。但如果損失函數是凸函數,梯度下降法得到的一定是全局最優解 ...
梯度下降(Gradient descent) 在有監督學習中,我們通常會構造一個損失函數來衡量實際輸出和訓練標簽間的差異。通過不斷更新參數,來使損失函數的值盡可能的小。梯度下降就是用來計算如何更新參數使得損失函數的值達到最小值(可能是局部最小或者全局最小)。 梯度下降計算流程 假設 ...
版權聲明:本文為博主原創文章,遵循 CC 4.0 BY-SA 版權協議,轉載請附上原文出處鏈接和本聲明。 原作者:WangBo_NLPR 原文:https://blog.csdn.net/wa ...
梯度下降法作為一種反向傳播算法最早在上世紀由geoffrey hinton等人提出並被廣泛接受。最早GD由很多研究團隊各自獨立提出來,可大都無人問津,而hinton做的研究完整表述了GD方法,同時hinton為自己的研究多次走動人際關系使得其論文出現在了當時的《nature》上,因此GD得到 ...