普通最小二乘法 理論: 損失函數: 權重計算: 1、對於普通最小二乘的系數估計問題,其依賴於模型各項的相互獨立性。 2、當各項是相關的,且設計矩陣 X的各列近似線性相關,那么,設計矩陣會趨向於奇異矩陣,這會導致最小二乘估計對於隨機誤差非常敏感,產生很大的方差 ...
背景: 考慮一個多項式擬合問題,如下圖,綠線的方程是sin x sin x ,藍點是由綠線並加上噪音 這些噪音是默認符合正態分布的 生成。已知條件是由NN個點構成的訓練集x x ,...xN Tx x ,...xN T,以及這些點對應的目標值t t ,...tN Tt t ,...tN T。現在的目標是:根據藍點來擬合一條曲線,而綠線就是我們要最終擬合的效果。 問題:假設我們最終要擬合的曲線是下面 ...
2019-12-25 17:55 0 696 推薦指數:
普通最小二乘法 理論: 損失函數: 權重計算: 1、對於普通最小二乘的系數估計問題,其依賴於模型各項的相互獨立性。 2、當各項是相關的,且設計矩陣 X的各列近似線性相關,那么,設計矩陣會趨向於奇異矩陣,這會導致最小二乘估計對於隨機誤差非常敏感,產生很大的方差 ...
http://baike.baidu.com/view/139822.htm http://baike.baidu.com/link?url=AHp30Rl0sWJZ9EhgknesZ595G0fL ...
目錄 一、線性回歸 二、最小二乘法 三、最小二乘法(向量表示) 四、Python實現 一、線性回歸 給定由n個屬性描述的樣本x=(x0, x1, x2, ... , xn),線性模型嘗試學習一個合適的樣本屬性的線性組合來進行預測任務,如:f(x ...
線性回歸:是利用數理統計中回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法。 梯度下降,http://www.cnblogs.com/hgl0417/p/5893930.html 最小二乘: 對於一般訓練集 ...
上篇文章介紹了最小二乘法的理論與證明、計算過程,這里給出兩個最小二乘法的計算程序代碼; #Octave代碼 clear all;close all; % 擬合的數據集 x = [2;6;9;13]; y = [4;8;12;21]; % 數據長度 N = length(x); % 3 %% 計算x ...
線性回歸之最小二乘法 1.最小二乘法的原理 最小二乘法的主要思想是通過確定未知參數\(\theta\)(通常是一個參數矩陣),來使得真實值和預測值的誤差(也稱殘差)平方和最小,其計算公式為\(E=\sum_{i=0}^ne_i^2=\sum_{i=1}^n(y_i-\hat{y_i ...
回歸: 所以從這里我們開始將介紹線性回歸的另一種更方便求解多變量線性回歸的方式:最小二乘法矩陣形 ...
相信學過數理統計的都學過線性回歸(linear regression),本篇文章詳細將講解單變量線性回歸並寫出使用最小二乘法(least squares method)來求線性回歸損失函數最優解的完整過程,首先推導出最小二乘法,后用最小二乘法對一個簡單數據集進行線性回歸擬合; 線性回歸 ...