原文:【轉】GMM與K-means聚類效果實戰

原地址: GMM與K means聚類效果實戰 備注 分析軟件:python 數據已經分享在百度雲:客戶年消費數據 密碼:lehv 該份數據中包含客戶id和客戶 種商品的年消費額,共有 個樣本 正文 一 數據探索和預處理 .讀取數據 .缺失檢查 輸出: 觀察得出:數據不存在缺失,且數據類型都為整數數值型 .不同商品消費額分布 為了避免分布圖右偏嚴重,剔除了大於 分位數的極端值 輸出: https: ...

2019-12-05 17:20 0 324 推薦指數:

查看詳情

聚類-K-Means

1.什么是K-MeansK均值算法聚類 關鍵詞:K個種子,均值聚類的概念:一種無監督的學習,事先不知道類別,自動將相似的對象歸到同一個簇中 K-Means算法是一種聚類分析(cluster analysis)的算法,其主要是來計算數據聚集的算法,主要通過不斷地取離種子點最近均值的算法 ...

Wed Dec 04 17:03:00 CST 2019 0 354
】使用scipy進行層次聚類k-means聚類

scipy cluster庫簡介 scipy.cluster是scipy下的一個做聚類的package, 共包含了兩類聚類方法: 1. 矢量量化(scipy.cluster.vq):支持vector quantization 和 k-means 聚類方法 2. 層次聚類 ...

Thu Apr 19 00:54:00 CST 2018 0 2241
Python K-Means廣告效果聚類分析

本文自https://www.freeaihub.com/article/ad-cluster-with-kmean-in-python.html,該頁可在線運行 本案例中的業務場景為,通過各類廣告渠道90天內額日均UV,平均注冊率、平均搜索率、訪問深度、平均停留時長、訂單轉化率、投放時間 ...

Wed Jul 01 17:06:00 CST 2020 0 749
K-Means 聚類算法

K-Means 概念定義: K-Means 是一種基於距離的排他的聚類划分方法。 上面的 K-Means 描述中包含了幾個概念: 聚類(Clustering):K-Means 是一種聚類分析(Cluster Analysis)方法。聚類就是將數據對象分組成為多個類或者簇 ...

Tue Feb 10 07:06:00 CST 2015 3 17123
K-means聚類算法

1.原文:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html K-means也是聚類算法中最簡單的一種了,但是里面包含的思想卻是不一般。最早我使用並實現這個算法是在學習韓爺爺那本數據挖掘的書中,那本書比較注重應用 ...

Sun Nov 09 00:57:00 CST 2014 0 11297
K-Means聚類算法

聚類分析是在數據中發現數據對象之間的關系,將數據進行分組,組內的相似性越大,組間的差別越大,則聚類效果越好。 不同的簇類型 聚類旨在發現有用的對象簇,在現實中我們用到很多的簇的類型,使用不同的簇類型划分數據的結果是不同的,如下的幾種簇類型。 明顯分離的 可以看到(a)中不同組中任意兩點 ...

Tue Jan 16 04:15:00 CST 2018 0 8335
K-means聚類算法

K-means聚類算法(K-平均/K-均值算法)是最為經典也是使用最為廣泛的一種基於距離的聚類算法。基於距離的聚類算法是指采用距離作為相似性量度的評價指標,也就是說當兩個對象離得近時,兩者之間的距離比較小,那么它們之間的相似性就比較大。 算法的主要思想是通過迭代過程把數據集划分為不同的類別 ...

Wed Oct 23 17:32:00 CST 2019 0 603
聚類算法:K-Means

1.K-Means定義: K-Means是一種無監督的基於距離的聚類算法,簡單來說,就是將無標簽的樣本划分為k個簇(or類)。它以樣本間的距離作為相似性的度量指標,常用的距離有曼哈頓距離、歐幾里得距離和閔可夫斯基距離。兩個樣本點的距離越近,其相似度就越高;距離越遠,相似度越低。 目的是,實現簇 ...

Wed Feb 06 07:44:00 CST 2019 0 792
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM