原文:InterpretML 微軟可解釋性機器學習包

InterpretML InterpretML: A Unified Framework for Machine Learning Interpretability https: github.com microsoft interpret InterpretML 是一個為實踐者和研究者提供機器學習可解釋性算法的開源 Python 軟件包。InterpretML 能提供以下兩種類型的可解釋性: ...

2019-11-26 19:46 0 292 推薦指數:

查看詳情

談談機器學習模型的可解釋性

深度學習一直被認為是一個黑盒子,但是試圖對模型的理解仍然是非常必要的。先從一個例子來說明解釋神經網絡的重要:古代一個小鎮上的一匹馬能夠做數學題,比如給它一個題目 2+3 ,它踏馬蹄 5 下后就會停下,這匹馬被當地稱作神馬漢斯。后來人們發現,漢斯其實並不會做數學題,它通過觀察主人的反應來判斷 ...

Fri Jul 30 00:39:00 CST 2021 0 249
【筆記】機器學習 - 李宏毅 -- Explainable ML 可解釋性機器學習

課程筆記 前言 兩種可解釋性: 局部解釋:為什么這種圖是貓? 全局解釋:貓是什么樣子的? 為什么需要可解釋機器學習?(打開黑盒) 一般的提升效果的方法就是一頓暴調參數,可解釋性可以幫助我們更好地提升模型性能。 其實人也是個黑盒(這個觀點太6了)。 可解釋機器學習的目標,不需要 ...

Wed Mar 04 01:39:00 CST 2020 0 932
機器學習可解釋性系列 - 是什么&為什么&怎么做

機器學習可解釋性分析 可解釋性通常是指使用人類可以理解的方式,基於當前的業務,針對模型的結果進行總結分析; 一般來說,計算機通常無法解釋它自身的預測結果,此時就需要一定的人工參與來完成可解釋性工作; 目錄: 是什么:什么叫可解釋性; 為什么:為什么要對模型結果進行解釋 ...

Wed Sep 30 23:43:00 CST 2020 1 1208
關於深度學習可解釋性

在這里學習的,在此簡要做了些筆記。 壹、可解釋性概述 1. 可解釋性是什么 人類對模型決策/預測結果的理解程度。 對於深度學習而言,可解釋性面臨兩個問題:①為甚會得到該結果?(過程)②為甚結果應該是這個?(結果) 理想狀態:通過溯因推理,計算出輸出結果,可是實現較好的模型解釋性。 衡量一個 ...

Sat Jan 15 00:10:00 CST 2022 0 1106
深度學習模型可解釋性初探

1. 可解釋性是什么 0x1:廣義可解釋性 廣義上的可解釋性指: 比如我們在調試 bug 的時候,需要通過變量審查和日志信息定位到問題出在哪里。 比如在科學研究中面臨一個新問題的研究時,我們需要查閱一些資料來了解這個新問題的基本概念和研究現狀,以獲得對研究方向的正確認識 ...

Sat Oct 13 23:07:00 CST 2018 0 2665
模型可解釋性方法--lime

與模型無關的局部可解釋性方法(LIME) 在機器學習模型事后局部可解釋性研究中,一種代表方法是由Marco Tulio Ribeiro等人提出的Local Interpretable Model-Agnostic Explanation(LIME)。 一般地,對於每一個輸入實例,LIME ...

Fri Jul 03 17:35:00 CST 2020 0 1697
【譯】BERT表示的可解釋性分析

Word2Vec已經過去很長時間了。當時似乎每一個玩機器學習的人都能背出“國王減去男人加上女人等於女王”這條“ ...

Fri Mar 01 17:54:00 CST 2019 0 988
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM