伯努利分布是一個離散型機率分布。試驗成功,隨機變量取值為1;試驗失敗,隨機變量取值為0。成功機率為p,失敗機率為q =1-p,N次試驗后,成功期望為N*p,方差為N*p*(1-p) ,所以伯努利分布又稱兩點分布。 觀察到的數據為D1,D2,D3,...,DN,極大似然的目標: 聯合分布難 ...
伯努利分布 伯努利分布,又名 分布,是一個離散概率分布。典型的示例是拋一個比較特殊的硬幣,每次拋硬幣只有兩種結果,正面和負面。拋出硬幣正面的概率為 p ,拋出負面的概率則為 p 。因此,對於隨機變量 X ,則有: begin aligned f X amp p f X amp p end aligned 由於隨機變量 X 只有 和 兩個值, X 的概率分布函數可寫為: f X p x p x qq ...
2019-11-21 16:59 0 651 推薦指數:
伯努利分布是一個離散型機率分布。試驗成功,隨機變量取值為1;試驗失敗,隨機變量取值為0。成功機率為p,失敗機率為q =1-p,N次試驗后,成功期望為N*p,方差為N*p*(1-p) ,所以伯努利分布又稱兩點分布。 觀察到的數據為D1,D2,D3,...,DN,極大似然的目標: 聯合分布難 ...
極大似然估計法是求點估計的一種方法,最早由高斯提出,后來費歇爾(Fisher)在1912年重新提出。它屬於數理統計的范疇。 大學期間我們都學過概率論和數理統計這門課程。 概率論和數理統計是互逆的過程。概率論可以看成是由因推果,數理統計則是由果溯因。 用兩個簡單的例子來說明它們之間 ...
前言 通信轉數據挖掘不久,發現自己在一些機器學習概念問題有些模糊,不同的教科書的公式形式有些出入,稍有混亂。本文總結了自己對交叉熵這個概念的一些物理意義方面的理解,嘗試將這些概念融會貫通。由於水平實在不高,只是把想到的東西簡單堆砌,簡單梳理了一下邏輯,看起來比較啰嗦.同時有不對之處 ...
https://zhuanlan.zhihu.com/p/26614750 https://blog.csdn.net/zengxiantao1994/article/details/7278784 ...
機器學習的面試題中經常會被問到交叉熵(cross entropy)和最大似然估計(MLE)或者KL散度有什么關系,查了一些資料發現優化這3個東西其實是等價的。 熵和交叉熵 提到交叉熵就需要了解下信息論中熵的定義。信息論認為: 確定的事件沒有信息,隨機事件包含最多的信息。 事件信息 ...
最近在看深度學習的"花書" (也就是Ian Goodfellow那本了),第五章機器學習基礎部分的解釋很精華,對比PRML少了很多復雜的推理,比較適合閑暇的時候翻開看看。今天准備寫一寫很多童鞋們w未必完全理解的最大似然估計的部分。 單純從原理上來說,最大似然估計並不是一個非常難以理解的東西。最大 ...
這一部分內容和吳恩達老師的CS229前面的部分基本一致,不過那是很久之前看的了,我盡可能寫的像吳恩達老師那樣思路縝密。 1.假設 之前我們了解過最大似然估計就是最大化似然函數$$L(\theta) = \sum log(p(x_{i}|\theta))$$ 來確定參數\(\theta ...
1、結論 測量誤差(測量)服從高斯分布的情況下, 最小二乘法等價於極大似然估計。 2、最大似然估計概念 ...