原文:深度學習-卷積神經網絡的發展-筆記

CNN的開山之作是LeCun提出的LeNet ,而其真正的爆發階段是 年AlexNet取得ImageNet比賽的分類任務的冠軍,並且分類准確率遠遠超過利用傳統方法實現的分類結果,AlexNet之后,深度學習便一發不可收拾,分類准確率每年都被刷榜,下圖展示了模型的變化情況,隨着模型的變深,Top 的錯誤率也越來越低,目前已經降低到了 . 左右,同樣的ImageNet數據集,人眼的辨識錯誤率大概為 ...

2019-11-14 20:50 0 330 推薦指數:

查看詳情

深度卷積神經網絡學習筆記(一)

1.卷積操作實質: 輸入圖像(input volume),在深度方向上由很多slice組成,對於其中一個slice,可以對應很多神經元,神經元的weight表現為卷積核的形式,即一個方形的濾波器(filter)(如3X3),這些神經元各自分別對應圖像中的某一個局部區域(local ...

Sun Jul 31 05:20:00 CST 2016 0 23613
深度學習筆記二:卷積神經網絡(CNN)

卷積神經網絡CNN 1. 緒論 1. 卷積神經網絡的應用 基本應用:分類、檢索、檢測、分割 2. 傳統神經網絡 VS 卷積神經網絡 深度學習三部曲: 放一個知乎上寫的輔助理解CNN的文章:https://zhuanlan.zhihu.com/p/27908027 Step 1. 搭建 ...

Sun Aug 02 05:43:00 CST 2020 0 1081
神經網絡深度學習 邱錫鵬 第5章 卷積神經網絡 讀書筆記

卷積神經網絡(CNN)是一種具有局部連接、權重共享等特性的深層前饋神經網絡卷積神經網絡最早主要是用來處理圖像信息。在用全連接前饋網絡來處理圖像時,會存在以下兩個問題: (1)參數太多:隨着隱藏層神經元數量的增多,參數的規模也會急劇增加。這會導致整個神經網絡的訓練效率非常低,也很容易出現 ...

Fri Feb 21 06:05:00 CST 2020 0 810
深度學習卷積神經網絡

,結點,單元,像素點,patch 局部感受野的大小 = 濾波器的大小 1、 引入   在人工神經網絡 ...

Mon Jul 20 05:17:00 CST 2015 2 8049
深度學習——卷積神經網絡入門

傳統神經網絡:   是全連接形式,即樣本的每個特征屬性都通過所有的隱藏層節點映射,最后輸出數據。由於是全連接,所以計算極為復雜,且模型不易學習卷積神經網絡卷積神經網絡(Convolutional Neural Networks, CNN), CNN可以有效的降低反饋神經網絡(傳統神經網絡 ...

Wed Feb 05 23:10:00 CST 2020 0 719
深度學習之 TensorFlow(四):卷積神經網絡

基礎概念:   卷積神經網絡(CNN):屬於人工神經網絡的一種,它的權值共享的網絡結構顯著降低了模型的復雜度,減少了權值的數量。卷積神經網絡不像傳統的識別算法一樣,需要對數據進行特征提取和數據重建,可以直接將圖片作為網絡的輸入,自動提取特征,並且對圖形的變形等具有高度不變形。在語音分析和圖像識別 ...

Thu May 10 05:14:00 CST 2018 2 1651
深度學習卷積神經網絡(CNN)

卷積神經網絡(CNN)因為在圖像識別任務中大放異彩,而廣為人知,近幾年卷積神經網絡在文本處理中也有了比較好的應用。我用TextCnn來做文本分類的任務,相比TextRnn,訓練速度要快非常多,准確性也比較高。TextRnn訓練慢得像蝸牛(可能是我太沒有耐心),以至於我直接中斷了訓練,到現在我已經 ...

Sun Apr 14 05:21:00 CST 2019 3 590
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM