機器學習算法可以分為兩大類:監督學習與非監督學習。數據集構成:‘監督學習:特征值+目標值;非監督學習:特征值’。 監督學習: 分類:K-近鄰算法、貝葉斯分類、決策樹與隨機森林、邏輯回歸、神經網絡 回歸:線性回歸、嶺回歸 標注:隱馬爾可夫模型 注:分類:目標值離散型數據;回歸 ...
有關智能優化算法: 參考學習: https: blog.csdn.net qq article details https: blog.csdn.net sinat article details gt 梯度下降 gt 進化類算法 遺傳算法 差分進化算法 免疫算法 gt 群智能算法 粒子群 PSO 蟻群 ACO gt 模擬退火算法 gt 禁忌搜索算法 gt 網格搜索法 分離間隔優化 參考學習:h ...
2019-06-22 09:21 0 1023 推薦指數:
機器學習算法可以分為兩大類:監督學習與非監督學習。數據集構成:‘監督學習:特征值+目標值;非監督學習:特征值’。 監督學習: 分類:K-近鄰算法、貝葉斯分類、決策樹與隨機森林、邏輯回歸、神經網絡 回歸:線性回歸、嶺回歸 標注:隱馬爾可夫模型 注:分類:目標值離散型數據;回歸 ...
轉自@王萌,有少許修改。 機器學習起源於人工智能,可以賦予計算機以傳統編程所無法實現的能力,比如飛行器的自動駕駛、人臉識別、計算機視覺和數據挖掘等。 機器學習的算法很多。很多時候困惑人們的是,很多算法是一類算法,而有些算法又是從其他算法中延伸出來的。這里,我們從兩個方面來給大家介紹,第一個方面 ...
是否在人類監督下進行訓練(監督,無監督和強化學習) 在機器學習中,無監督學習就是聚類,事先不知道樣本的類別,通過某種辦法,把相似的樣本放在一起歸位一類;而監督型學習就是有訓練樣本,帶有屬性標簽,也可以理解成樣本有輸入有輸出。 所有的回歸算法和分類算法都屬於監督學習。回歸和分類的算法區別在於輸出 ...
一、概念 隨機森林(Random Forest)是一種由多個決策樹組成的分類器,是一種監督學習算法,大部分時候是用bagging方法訓練的。 bagging(bootstrap aggregating),訓練多輪,每輪的樣本由原始樣本中隨機可放回取出n個樣本組成,最終的預測函數對分類問題采用 ...
一、LR分類器(Logistic Regression Classifier) 在分類情形下,經過學習后的LR分類器是一組權值w0,w1, …, wn,當測試樣本的數據輸入時,這組權值與測試數據按照線性加和得到x = w0+w1x1+w2x2+… wnxn,這里x1,x2 ...
**什么是人工智能、機器學習與深度學習? ** 人工智能的簡潔定義如下:努力將通常由人類完成的智力任務自動化。 機器學習指自我學習執行特定任務。他和深度學習的核心問題都在於有意義地變換數據。 深度學習是機器學習的一個分支領域 : 它是從數據中學習表示的一種新方法,強調從連續的層 ...
目前隨着人工智能的發展,機器學習的應用領域日益寬泛,各種機器學習適應不同的應用場景,而機器學習差別的關鍵點之一就在於所使用算法的不同,今天就為大家介紹 4 種主要的分類算法。 朴素貝葉斯分類 朴素貝葉斯分類是基於貝葉斯定理與特征條件獨立假設的分類方法,發源於古典數學理論,擁有穩定的數學基礎 ...
//2019.08.14#機器學習算法評價分類結果1、機器學習算法的評價指標一般有很多種,對於回歸問題一般有MAE,MSE,AMSE等指標,而對於分類算法的評價指標則更多:准確度score,混淆矩陣、精准率、召回率以及ROC曲線、PR曲線等。2、對於分類算法只用准確率的評價指標是不夠 ...