1. 矩的概念 圖像識別的一個核心問題是圖像的特征提取,簡單描述即為用一組簡單的數據(圖像描述量)來描述整個圖像,這組數據越簡單越有代表性越好。良好的特征不受光線、噪點、幾何形變的干擾。圖像識別發展幾十年,不斷有新的特征提出,而圖像不變矩就是其中一個。 矩是概率與統計中的一個概念,是隨機變量 ...
圖像特征可以包括顏色特征 紋理特征 形狀特征以及局部特征點等。其中局部特點具有很好的穩定性,不容易受外界環境的干擾。圖像特征提取是圖像分析與圖像識別的前提,它是將高維的圖像數據進行簡化表達最有效的方式,從一幅圖像的的數據矩陣中,我們看不出任何信息,所以我們必須根據這些數據提取出圖像中的關鍵信息,一些基本元件以及它們的關系。 圖像局部特征描述的核心問題是不變性 魯棒性 和可區分性。由於使用局部圖像特 ...
2019-09-28 16:39 0 2029 推薦指數:
1. 矩的概念 圖像識別的一個核心問題是圖像的特征提取,簡單描述即為用一組簡單的數據(圖像描述量)來描述整個圖像,這組數據越簡單越有代表性越好。良好的特征不受光線、噪點、幾何形變的干擾。圖像識別發展幾十年,不斷有新的特征提出,而圖像不變矩就是其中一個。 矩是概率與統計中的一個概念,是隨機變量 ...
特征提取是計算機視覺和圖像處理中的一個概念。它指的是使用計算機提取圖像信息,決定每個圖像的點是否屬於一個圖像特征。特征提取的結果是把圖像上的點分為不同的子集,這些子集往往屬於孤立的點、連續的曲線或者連續的區域。 特征的定義 至今為止特征沒有萬能和精確的定義。特征的精確定義往往由問題或者應用類型 ...
這里使用的是python 3.5 、opencv_python-3.4.0+contrib,特征提取的代碼如下: 結提取果: ...
圖像局部特征點檢測算法綜述 特征提取是計算機視覺和圖像處理中的一個概念。它指的是使用計算機提取圖像信息,決定每個圖像的點是否屬於一個圖像特征。特征提取的結果是把圖像上的點分為不同的子集,這些子集往往屬於孤立的點、連續的曲線或者連續的區域。 特征的定義 ...
特征提取是計算機視覺和圖像處理中的一個概念。它指的是使用計算機提取圖像信息,決定每個圖像的點是否屬於一個圖像特征。特征提取的結果是把圖像上的點分為不同的子集,這些子集往往屬於孤立的點、連續的曲線或者連續的區域。 特征的定義: 至今為止特征沒有萬能和精確的定義。特征的精確 ...
一、LBP算子 局部二值模式是一種灰度范圍內的非參數描述子,具有對灰度變化不敏感且計算速度快等優點[1].LBP算子利用中心像素的領域像素與中心像素的比較結果進行編碼。常見的LBPP,R模式有: P,R分別代表領域像素點的個數和領域半徑,上圖所示分別為8點半徑為1;16點半徑 ...
1、HOG特征: 方向梯度直方圖(Histogram of Oriented Gradient, HOG)特征是一種在計算機視覺和圖像處理中用來進行物體檢測的特征描述子。它通過計算和統計圖像局部區域的梯度方向直方圖來構成特征。Hog特征結合SVM分類器已經被廣泛應用於圖像識別中 ...
,並定義該模板的特征值為白色矩形像素和減去黑色矩形像素和。Haar特征值反映了圖像的灰度變化情況。例如:臉部 ...