原文:梯度下降法的數學原理

梯度下降法又稱最速下降法,是求解無約束最優化問題的一種最常用的方法,在對損失函數最小化時經常使用。梯度下降法是一種迭代算法。選取適當的初值x ,不斷迭代,更新x的值,進行目標函數的極小化,直到收斂。由於負梯度方向時使函數值下降最快的方向,在迭代的每一步,以負梯度方向更新x的值,從而達到減少函數值的目的。提到梯度下降法,就不得不提到方向導數與梯度了。 .方向導數 設函數z f x,y 在點p x,y ...

2019-09-26 21:41 0 2388 推薦指數:

查看詳情

梯度下降法原理及小結

  在機器學習的核心內容就是把數據喂給一個人工設計的模型,然后讓模型自動的“學習”,從而優化模型自身的各種參數,最終使得在某一組參數下該模型能夠最佳的匹配該學習任務。那么這個“學習”的過程就是機器學習算法的關鍵。梯度下降法就是實現該“學習”過程的一種最常見的方式,尤其是在深度學習(神經網絡)模型中 ...

Thu Dec 24 07:31:00 CST 2020 0 1465
梯度下降法原理與python實現

梯度下降法(Gradient descent)是一個一階最優化算法,通常也稱為最速下降法。 要使用梯度下降法找到一個函數的局部極小值,必須向函數上當前點對應梯度(或者是近似梯度)的反方向的規定步長距離點進行迭代搜索。如果相反地向梯度正方向迭代進行搜索,則會接近函數的局部極大值點;這個過程 ...

Thu Feb 14 01:15:00 CST 2019 0 1127
線性回歸與梯度下降法[一]——原理與實現

看了coursea的機器學習課,知道了梯度下降法。一開始只是對其做了下簡單的了解。隨着內容的深入,發現梯度下降法在很多算法中都用的到,除了之前看到的用來處理線性模型,還有BP神經網絡等。於是就有了這篇文章。 本文主要講了梯度下降法的兩種迭代思路,隨機梯度下降(Stochastic ...

Tue Dec 13 00:23:00 CST 2016 5 11092
回歸與梯度下降法及實現原理

回歸與梯度下降 回歸在數學上來說是給定一個點集,能夠用一條曲線去擬合之,如果這個曲線是一條直線,那就被稱為線性回歸,如果曲線是一條二次曲線,就被稱為二次回歸,回歸還有很多的變種,如locally weighted回歸,logistic回歸 ...

Thu Mar 22 06:01:00 CST 2018 8 3792
梯度下降法原理與仿真分析||系列(1)

1 引言 梯度下降法(Gradient Descent)也稱為最速下降法(Steepest Descent),是法國數學家奧古斯丁·路易·柯西 (Augustin Louis Cauchy) 於1847年提出來,它是最優化方法中最經典和最簡單的一階方法之一。梯度下降法由於其較低的復雜度和簡單 ...

Fri Dec 11 01:07:00 CST 2020 0 729
梯度下降法和隨機梯度下降法

1. 梯度   在微積分里面,對多元函數的參數求∂偏導數,把求得的各個參數的偏導數以向量的形式寫出來,就是梯度。比如函數f(x,y), 分別對x,y求偏導數,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,簡稱grad f(x,y)或者▽f(x,y)。對於在點(x0,y0)的具體梯度向量 ...

Sat Jun 01 23:33:00 CST 2019 0 2193
梯度下降法和隨機梯度下降法

(1)梯度下降法 在迭代問題中,每一次更新w的值,更新的增量為ηv,其中η表示的是步長,v表示的是方向 要尋找目標函數曲線的波谷,采用貪心法:想象一個小人站在半山腰,他朝哪個方向跨一步,可以使他距離谷底更近(位置更低),就朝這個方向前進。這個方向可以通過微分得到。選擇足夠小的一段曲線 ...

Fri Dec 16 01:50:00 CST 2016 0 34664
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM