目的:為了讓訓練效果更好 bagging:是一種並行的算法,訓練多個分類器,取最終結果的平均值 f(x) = 1/M∑fm(x) boosting: 是一種串行的算法,根據前一次的結果,進行加權來提高訓練效果 stacking; 是一種堆疊算法,第一步使用多個算法求出結果,再將結果作為特征 ...
Ensemble learning 集成算法 目的 讓機器學習的效果更好, 量變引起質變 繼承算法是競賽與論文的神器, 注重結果的時候較為適用 集成算法 分類 Bagging bootstrap aggregation 公式 原理 訓練多個分類器取平均, 並行的訓練一堆的分類器 典例 隨機森林 隨機 輸入 數據源采樣隨機 在原有數據上的進行 比例的有放回的數據取樣 數據量相同, 但是每個樹的樣本數 ...
2019-09-23 20:26 0 347 推薦指數:
目的:為了讓訓練效果更好 bagging:是一種並行的算法,訓練多個分類器,取最終結果的平均值 f(x) = 1/M∑fm(x) boosting: 是一種串行的算法,根據前一次的結果,進行加權來提高訓練效果 stacking; 是一種堆疊算法,第一步使用多個算法求出結果,再將結果作為特征 ...
和分類。樹的節點將要預測的空間划分為一系列簡單域划分預測空間的規則可以被建模為一棵樹,所以這種方法也叫決策 ...
集成學習(Ensemble Larning)本身不是一個單獨的機器學習算法,是通過構建並結合多個機器學習器來完成學習任務的思想。通常的集成學習的方法指的是同質個體學習器。同質個體學習器使用最多的模型是CART決策樹和神經網絡。按照個體學習器之間是否存在依賴關系可以分為兩類,第一個 ...
table { margin: auto } 集成算法往往被稱為三個臭皮匠,賽過一個諸葛亮,集成算法的起源是來自與PAC中的強可學習和弱可學習,如果類別決策邊界可以被一個多項式表示,並且分類正確率高,那么就是強學習的,如果分類正確率不高,僅僅只是比隨機猜測好一點,那么就是弱可學習,后來有人證明強 ...
1、集成學習概述 1.1 集成學習概述 集成學習在機器學習算法中具有較高的准去率,不足之處就是模型的訓練過程可能比較復雜,效率不是很高。目前接觸較多的集成學習主要有2種:基於Boosting的和基於Bagging,前者的代表算法有Adaboost、GBDT、XGBOOST、后者的代表算法主要 ...
集成學習 基本思想:如果單個分類器表現的很好,那么為什么不適用多個分類器呢? 通過集成學習可以提高整體的泛化能力,但是這種提高是有條件的: (1)分類器之間應該有差異性; (2)每個分類器的精度必須大於0.5; 如果使用的分類器沒有差異,那么集成起來的分類 ...
最近在系統研究集成學習,到Adaboost算法這塊,一直不能理解,直到看到一篇博文,才有種豁然開朗的感覺,真的講得特別好,原文地址是(http://blog.csdn.net/guyuealian/article/details/70995333),在此摘錄,方便查找與復習 ...
一、概念 XGBoost全名叫(eXtreme Gradient Boosting)極端梯度提升,經常被用在一些比賽中,其效果顯著。它是大規模並行boosted tree的工具,它是目前最快最好的開源boosted tree工具包。XGBoost 所應用的算法就是 GBDT(gradient ...