原文:【機器學習】誤差逆傳播算法(反向傳播算法)

誤差逆傳播算法 errorBackPropagation,BP 是神經網絡中常用的傳播算法。BP算法不僅可以應用於多層前饋神經網絡,還可以應用於其他類型的神經網絡,如訓練遞歸神經網絡。通常所說的 BP網絡 一般是指用BP算法訓練的多層前饋神經網絡。 給定訓練集 D left x ,y , x ,y ,..., x m ,y m right ,x i in mathbb R d ,y i in m ...

2019-09-17 20:51 0 393 推薦指數:

查看詳情

機器學習反向傳播算法 BP

知識回顧 1:首先引入一些便於稍后討論的新標記方法: 假設神經網絡的訓練樣本有m個,每個包含一組輸入x和一組輸出信號y,L表示神經網絡的層數,S表示每層輸入的神經元的個數,SL代表最后一層中處理的 ...

Thu Aug 03 23:11:00 CST 2017 2 2000
機器學習反向傳播算法

,為什么這么說呢?這一章主要講后向傳播(Backpropagration, BP)算法,Ng花了一大半的時間 ...

Fri May 26 23:48:00 CST 2017 0 3604
神經網絡和深度學習之——誤差反向傳播算法

在講解誤差反向傳播算法之前,我們來回顧一下信號在神經網絡中的流動過程。請細細體會,當輸入向量\(X\)輸入感知器時,第一次初始化權重向量\(W\)是隨機組成的,也可以理解成我們任意設置了初始值,並和輸入做點積運算,然后模型通過權重更新公式來計算新的權重值,更新后的權重值又接着和輸入相互作用 ...

Thu Jul 19 19:52:00 CST 2018 2 12533
Back Propagation:誤差反向傳播算法

1. 誤差反向傳播算法(Back Propagation): ①將訓練集數據輸入到神經網絡的輸入層,經過隱藏層,最后達到輸出層並輸出結果,這就是前向傳播過程。②由於神經網絡的輸出結果與實際結果有誤差,則計算估計值與實際值之間的誤差,並將該誤差從輸出層向隱藏層反向傳播,直至傳播到輸入層;③在反向 ...

Sat Jan 25 02:02:00 CST 2020 0 1161
深度學習 - 反向傳播算法

理解反向傳播 要理解反向傳播,先來看看正向傳播。下面是一個神經網絡的一般結構圖: 其中,\(x\) 表示輸入樣本,\(\bm{w}\) 表示未知參數(圖中未標出偏置 \(b\)), \(S\) 表示激活函數,\(y\) 表示預測值,\(\hat{y}\) 表示真實值。 顯然,通過從樣本 \(x ...

Mon Sep 06 23:10:00 CST 2021 0 215
神經網絡 誤差傳播算法推導 BP算法

  誤差傳播算法是迄今最成功的神經網絡學習算法,現實任務中使用神經網絡時,大多使用BP算法進行訓練。   給定訓練集\(D={(x_1,y_1),(x_2,y_2),......(x_m,y_m)},x_i \in R^d,y_i \in R^l\),即輸入示例由\(d\)個屬性描述,輸出\(l ...

Thu Nov 30 06:04:00 CST 2017 0 2486
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM