//2019.08.14#機器學習算法評價分類結果1、機器學習算法的評價指標一般有很多種,對於回歸問題一般有MAE,MSE,AMSE等指標,而對於分類算法的評價指標則更多:准確度score,混淆矩陣、精准率、召回率以及ROC曲線、PR曲線等。2、對於分類算法只用准確率的評價指標是不夠 ...
評價指標是針對將相同的數據,輸入不同的算法模型,或者輸入不同參數的同一種算法模型,而給出這個算法或者參數好壞的定量指標。 在模型評估過程中,往往需要使用多種不同的指標進行評估,在諸多的評價指標中,大部分指標只能片面的反應模型的一部分性能,如果不能合理的運用評估指標,不僅不能發現模型本身的問題,而且會得出錯誤的結論。 最近恰好在做文本分類的工作,所以把機器學習分類任務的評價指標又過了一遍。本文將詳細 ...
2019-08-27 14:52 0 4140 推薦指數:
//2019.08.14#機器學習算法評價分類結果1、機器學習算法的評價指標一般有很多種,對於回歸問題一般有MAE,MSE,AMSE等指標,而對於分類算法的評價指標則更多:准確度score,混淆矩陣、精准率、召回率以及ROC曲線、PR曲線等。2、對於分類算法只用准確率的評價指標是不夠 ...
一、常用分類算法的優缺點 二、正確率能很好的評估分類算法嗎 不同算法有不同特點,在不同數據集上有不同的表現效果,根據特定的任務選擇不同的算法。如何評價分類算法的好壞,要做具體任務具體分析。對於決策樹,主要用正確率去評估,但是其他算法,只用正確率能很好的評估嗎? 答案是否定的。 正確率確實 ...
機器學習分為三個階段: 第一階段:學習模型。采用學習算法,通過對訓練集進行歸納學習得到分類模型; 第二階段:測試模型。將已經學習得到的分類模型用於測試集,對測試集中未知類別的實例進行分類。 第三階段:性能評估。顯然,通過測試集產生的分類未必是最佳的,這就導致對測試集的分類 ...
最近太忙已經好久沒有寫博客了,今天整理分享一篇關於損失函數的文章吧,以前對損失函數的理解不夠深入,沒有真正理解每個損失函數的特點以及應用范圍,如果文中有任何錯誤,請各位朋友指教,謝謝~ ...
原文地址 http://www.open-open.com/lib/view/open1420615208000.html http://www.cnblogs.com/subconscious/p/4107357.html 引論 在本篇文章中,我將對機器學習做個 ...
http://www.open-open.com/lib/view/open1420615208000.html 閱讀文件夾 1.一個故事說明什么是機器學習 2.機器學習的定義 4.機器學習的方法 5.機器學習的應用–大數據 ...
http://www.open-open.com/lib/view/open1420615208000.html http://www.cnblogs.com/subconscious/p/4107357.html 兩文章可能有點不同 從機器學習談起 在本篇 ...
一、ROC曲線: 1、混淆矩陣: 針對二元分類問題,將實例分為正類或者負類,會出現四種情況: (1)實例本身為正類,被預測為正類,即真正類(TP); (2)實例本身為正類,被預測為負類,即假負類(FN); (3)實例本身為負類,被預測為正類,即假正類(FP); (4)實例本身為負類 ...