原文:決策樹、隨機森林與k-means聚類算法

決策樹的構建滿足信息熵增益最大化原則 決策樹的優點: 可解釋性高 能處理非線性的數據 不需要數據歸一化 可以用於特征工程 對數據分布沒有偏好 廣泛使用 容易軟件實現 可以轉化為規則 決策樹的弱點 啟發式生成,不是最優解 容易過擬合 微小的數據改變會改變整個樹的形狀 對類別不平衡的數據不友好 隨機森林指訓練多個決策樹結果,預測時回歸取均值,分類取眾數 隨機體現在帶放回的隨機取數據子集做訓練數據,隨機 ...

2019-07-20 17:24 0 1202 推薦指數:

查看詳情

決策樹隨機森林算法

決策樹 決策樹模型是一種樹形結構,基於特征對實例進行分類或回歸的過程。即根據某個特征把數據分划分到若干個子區域(子樹),再對子區域遞歸划分,直到滿足某個條件則停止划分並作為葉子節點,不滿足條件則繼續遞歸划分。 一個簡單的決策樹分類模型:紅色框出的是特征。 決策樹模型學習 ...

Sat Apr 01 07:34:00 CST 2017 0 1995
決策樹隨機森林

這里僅介紹分類決策樹決策樹:特征作為決策的判斷依據,整個模型形如樹形結構,因此,稱之為決策樹 對於分類決策樹,他們可以認為是一組if-then規則的集合。決策樹的每一個內部節點有特征組成,葉子節點代表了分類的結果。父節點和子節點之間是由有向邊連接,表示了決策 ...

Wed Jun 01 19:32:00 CST 2016 0 1589
決策樹隨機森林

一、決策樹 決策樹(decision tree)是一種基本的分類與回歸方法,本篇主要討論用於分類的決策樹。 1.決策樹模型 分類決策樹模型是一種描述對實例進行分類的樹形結構。決策樹由結點(node)和有向邊(directed edge)組成。結點有兩種類型:內部結點(internal ...

Thu Jan 17 20:20:00 CST 2019 0 678
K-Means 聚類算法

K-Means 概念定義: K-Means 是一種基於距離的排他的聚類划分方法。 上面的 K-Means 描述中包含了幾個概念: 聚類(Clustering):K-Means 是一種聚類分析(Cluster Analysis)方法。聚類就是將數據對象分組成為多個類或者簇 ...

Tue Feb 10 07:06:00 CST 2015 3 17123
K-means聚類算法

1.原文:http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html K-means也是聚類算法中最簡單的一種了,但是里面包含的思想卻是不一般。最早我使用並實現這個算法是在學習韓爺爺那本數據挖掘的書中,那本書比較注重應用 ...

Sun Nov 09 00:57:00 CST 2014 0 11297
K-Means聚類算法

聚類分析是在數據中發現數據對象之間的關系,將數據進行分組,組內的相似性越大,組間的差別越大,則聚類效果越好。 不同的簇類型 聚類旨在發現有用的對象簇,在現實中我們用到很多的簇的類型,使用不同的簇類型划分數據的結果是不同的,如下的幾種簇類型。 明顯分離的 可以看到(a)中不同組中任意兩點 ...

Tue Jan 16 04:15:00 CST 2018 0 8335
K-means聚類算法

K-means聚類算法K-平均/K-均值算法)是最為經典也是使用最為廣泛的一種基於距離的聚類算法。基於距離的聚類算法是指采用距離作為相似性量度的評價指標,也就是說當兩個對象離得近時,兩者之間的距離比較小,那么它們之間的相似性就比較大。 算法的主要思想是通過迭代過程把數據集划分為不同的類別 ...

Wed Oct 23 17:32:00 CST 2019 0 603
聚類算法K-Means

1.K-Means定義: K-Means是一種無監督的基於距離的聚類算法,簡單來說,就是將無標簽的樣本划分為k個簇(or類)。它以樣本間的距離作為相似性的度量指標,常用的距離有曼哈頓距離、歐幾里得距離和閔可夫斯基距離。兩個樣本點的距離越近,其相似度就越高;距離越遠,相似度越低。 目的是,實現簇 ...

Wed Feb 06 07:44:00 CST 2019 0 792
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM