一、朴素的貝葉斯算法原理 貝葉斯分類算法以樣本可能屬於某類的概率來作為分類依據,朴素貝葉斯分類算法是貝葉斯分類算法中最簡單的一種,朴素的意思是條件概率獨立性。 條件概率的三個重要公式: (1)概率乘法公式: P(AB)= P(B) P(A|B) = P ...
機器學習 算法原理詳細推導與實現 三 :朴素貝葉斯 在上一篇算法中,邏輯回歸作為一種二分類的分類器,一般的回歸模型也是是判別模型,也就根據特征值來求結果概率。形式化表示為 p y x theta ,在參數 theta 確定的情況下,求解條件概率 p y x 。通俗的解釋為:在給定特定特征后預測結果出現的概率。邏輯回歸的 y 是離散型,取值為 , 。這里將要介紹另一個分類算法 朴素貝葉斯,用以解決 ...
2019-07-05 10:09 0 951 推薦指數:
一、朴素的貝葉斯算法原理 貝葉斯分類算法以樣本可能屬於某類的概率來作為分類依據,朴素貝葉斯分類算法是貝葉斯分類算法中最簡單的一種,朴素的意思是條件概率獨立性。 條件概率的三個重要公式: (1)概率乘法公式: P(AB)= P(B) P(A|B) = P ...
朴素貝葉斯算法原理與代碼實現 本文系作者原創,轉載請注明出處:https://www.cnblogs.com ...
朴素貝葉斯中的朴素是指特征條件獨立假設, 貝葉斯是指貝葉斯定理, 我們從貝葉斯定理開始說起吧. 1. 貝葉斯定理 貝葉斯定理是用來描述兩個條件概率之間的關系 1). 什么是條件概率? 如果有兩個事件A和B, 條件概率就是指在事件B發生的條件下, 事件A發生的概率, 記作P(A|B ...
注:本系列所有博客將持續更新並發布在github上,您可以通過github下載本系列所有文章筆記文件 1 引言 說到朴素貝葉斯算法,很自然地就會想到貝葉斯概率公式,這是我們在高中的時候就學過的內容,沒錯,這也正是朴素貝葉斯算法的核心,今天我們也從貝葉斯概率公式開始,全面擼一擼朴素貝葉斯算法 ...
和 X 同時發生的概率一樣。 2 朴素貝葉斯定理 朴素貝葉斯的經典應用是對垃圾郵件的過濾,是對文 ...
1. 貝葉斯定理 條件概率公式: 這個公式非常簡單,就是計算在B發生的情況下,A發生的概率。但是很多時候,我們很容易知道P(A|B),需要計算的是P(B|A),這時就要用到貝葉斯定理: 2. 朴素貝葉斯分類 朴素貝葉斯分類的推導過程就不詳述了,其流程可以簡單的用一張圖來表示 ...
朴素貝葉斯是經典的機器學習算法之一,也是為數不多的基於概率論的分類算法。對於大多數的分類算法,在所有的機器學習分類算法中,朴素貝葉斯和其他絕大多數的分類算法都不同。比如決策樹,KNN,邏輯回歸,支持向量機等,他們都是判別方法,也就是直接學習出特征輸出Y和特征X之間的關系,要么是決策函數 ...
1、模型的定義 朴素貝葉斯是基於貝葉斯定理與特征條件獨立假設的分裂方法。首先我們來了解下貝葉斯定理和所要建立的模型。對於給定的數據集 假定輸出的類別yi ∈ {c1, c2, ...., ck},朴素貝葉斯通過訓練數據集的條件概率分布$P(x|y)$來學習聯合概率。因此在 ...