概括分類: 1) 基於內容的推薦:這一類一般依賴於自然語言處理NLP的一些知識,通過挖掘文本的TF-IDF特征向量,來得到用戶的偏好,進而做推薦。這類推薦算法可以找到用戶獨特的小眾喜好,而且還有較好的解釋性。這一類由於需要NLP的基礎,本文就不多講,在后面專門講NLP的時候再討 ...
Apriori算法 優點:易編碼實現。 缺點:在大數據集上可能較慢。 適用數據:數值型 標稱型。 關聯分析 關聯分析尋找的關系可以有兩種形式:頻繁項集或者關聯規則。 頻繁項集:經常出現在一塊的物品的集合 關聯規則:暗示兩種物品之間可能存在很強的關系。 支持度:數據集中包含該項集的記錄所占的比例。 針對項集 可信度 置信度:一條關聯規則 A gt B ,支持度 A,B 支持度 A 的比值為可信度。 ...
2019-05-23 18:36 0 990 推薦指數:
概括分類: 1) 基於內容的推薦:這一類一般依賴於自然語言處理NLP的一些知識,通過挖掘文本的TF-IDF特征向量,來得到用戶的偏好,進而做推薦。這類推薦算法可以找到用戶獨特的小眾喜好,而且還有較好的解釋性。這一類由於需要NLP的基礎,本文就不多講,在后面專門講NLP的時候再討 ...
一、概述 關聯規則是發現事物之間的關系的分析過程,關聯規則最初提出的動機是針對購物籃分析(Market Basket Analysis)問題提出的。假設分店經理想更多的了解顧客的購物習慣。特別是,想知道哪些商品顧客可能會在一次購物時同時購買?為回答該問題,可以對商店的顧客事物零售數量進行 ...
)。 本文根據最近學習機器學習書籍 網絡文章的情況,特將一些學習思路做了歸納整理,詳情如下.如有不當之處,請各 ...
機器學習算法 什么是程序(Program) 計算機程序,是指為了得到某種結果而可以由計算機(等具有信息處理能力的裝置)執行的代碼化指令序列(或者可以被自動轉換成代碼化指令序列的符號化指令序列或者符號化語句序列)。 通俗講,計算機給人干活,但它不是人,甚至不如狗懂人的需要(《小羊肖恩 ...
轉載自:http://www.cnblogs.com/tornadomeet 朴素貝葉斯: 有以下幾個地方需要注意: 1. 如果給出的特征向量長度可能不同,這是需要歸一化為通長度的 ...
1、線性回歸 優點:結果易於理解,計算上不復雜。 缺點:對非線性的數據擬合不好。 適用數據:數值型、標稱型。 回歸的目的是預測數值型的目標值。最直接的辦法是依據輸入寫出一個目標值的計算公式;這就是回 ...
logistic回歸是一種廣義線性回歸(generalized linear model),因此與多重線性回歸分析有很多相同之處。它們的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求參數,其區別在於他們的因變量不同,多重線性回歸直接將w‘x+b作為因變量,即y =w‘x+b ...
一、前述 關聯規則的目的在於在一個數據集中找出項之間的關系,也稱之為購物藍分析 (market basket analysis)。例如,購買鞋的顧客,有10%的可能也會買襪子,60%的買面包的顧客,也會買牛奶。這其中最有名的例子就是"尿布和啤酒"的故事了。 二、相關概念 交易集:包含所有 ...