論文原址:https://arxiv.org/abs/1811.07275 摘要 一個訓練好的網絡模型由於其模型捕捉的特征中存在大量的重疊,可以在不過多的降低其性能的條件下進行壓縮剪枝。一些skip/Dense網絡結構一定程度上減弱了重疊的現象,但這種做法引入了大量 ...
論文原址:https: arxiv.org pdf . .pdf github: https: github.com implus SKNet 摘要 在標准的卷積網絡中,每層網絡中神經元的感受野的大小都是相同的。在神經學中,視覺神經元感受野的大小是由刺激機制構建的,而在卷積網絡中卻很少考慮這個因素。本文提出的方法可以使神經元對於不同尺寸的輸入信息進行自適應的調整其感受野的大小。building ...
2019-05-12 11:12 2 2936 推薦指數:
論文原址:https://arxiv.org/abs/1811.07275 摘要 一個訓練好的網絡模型由於其模型捕捉的特征中存在大量的重疊,可以在不過多的降低其性能的條件下進行壓縮剪枝。一些skip/Dense網絡結構一定程度上減弱了重疊的現象,但這種做法引入了大量 ...
論文原址:https://arxiv.org/abs/1903.00621 摘要 本文提出了基於無anchor機制的特征選擇模塊,是一個簡單高效的單階段組件,其可以結合特征金字塔嵌入到單階段檢測器中。FSAF解決了傳統基於anchor機制的兩個限制:(1)啟發式 ...
論文鏈接:https://arxiv.org/abs/1904.08189 github:https://github.com/Duankaiwen/CenterNet 摘要 目標檢測中,基於關鍵點的方法經常出現大量不正確的邊界框,主要是由於缺乏對相關剪裁區域的額外監督 ...
目錄 作者要解決的問題 Focal loss(CVPR2017) Focal loss的解決方案 Focal loss的不足 設計思路 梯度與樣本的關系 梯度模計算方法 改進 ...
論文原址:https://arxiv.org/abs/1709.01507 github:https://github.com/hujie-frank/SENet 摘要 卷積網絡的關鍵構件是卷積操作,在每層感受野的范圍內通過融合局部及channel-wise信息可以使 ...
論文原址:https://arxiv.org/abs/1904.01355 github: tinyurl.com/FCOSv1 摘要 本文提出了一個基於全卷積的單階段檢測網絡,類似於語義分割,針對每個像素進行預測。RetinaNet,SSD,YOLOv3,Faster ...
論文原址:https://arxiv.org/abs/1904.03797 摘要 FoveaBox屬於anchor-free的目標檢測網絡,FoveaBox直接學習可能存在的圖片種可能存在的目標,這期間並不需要anchor作為參考。主要靠兩方面實現:(1)產生類別敏感的語義 ...
論文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基於關鍵點模式進行目標檢測是一種新的方法,他並不需要依賴於anchor ...